

18 August 2020

Reference No. 1898725_7403-012-LR-Rev1

Graeme Card Gisborne District Council PO Box 747 Gisborne 4010

GISBORNE MAR STAGE 3 INJECTION TRIAL – INTERIM MONITORING REPORT – AUGUST 2020

Dear Graeme,

In this letter report¹ Golder Associates NZ Ltd (Golder) in association with KWR Water Research Institute (KWR) provides the first interim monitoring report for 2020, regarding the Gisborne Managed Aquifer Recharge (MAR) Stage 2 trial. The data analysed was generated from monitoring rounds completed on 14 October 2019, 11 November 2019, 6 May 2020 and flow/level data collected in July 2020. Injection of MAR water recommenced on 13 May 2020.

Previous monitoring results covering the period of September 2018 and August 2019 are reported by Golder².

Gisborne MAR Project

Gisborne District Council (GDC) has initiated the Gisborne Managed Aquifer Recharge (MAR) project, which encompasses investigations and aquifer injection pilot trials to assess the technical and environmental feasibility of MAR solutions to counter the long-term groundwater level decline and degradation of the water quality of the Makauri aquifer beneath the Poverty Bay Flats, Gisborne.

A total of 73,180 m³ of Waipaoa River water was injected into the Makauri Aquifer with a single injection well during three months in the winter 2017 trial. No injection was undertaken in 2018.

Following MAR infrastructure upgrading in 2019, the Stage 2 injection trial has commenced on August 2019. In 2019 a total of 39,881 m³ was injected into the Makauri Aquifer over a period of 69 days. Another injection trial as part of Stage 2 has commenced on 12 May 2020.

Interim Monitoring Reporting

The Gisborne MAR Stage 2 Injection trial includes a programme to monitor the MAR infrastructure performance, injection flows and quality, and the hydraulic and hydrogeochemical response of the aquifer injection trials (monitoring schedule followed up to June 2020 and lab testing parameter suites included in Attachment 2). Reporting during the injection trial period addresses the following matters:

¹ Subject to Golder's limitations attached (Attachment 1).

² Golder Letter Report No.s: 1898725-7403-007-LR-Rev0 (25/9/2019), 1898725-7403-006-LR-Rev0 (8/2/2019), and 1898725-7403-005-LR-Rev1 21/12/2018)

- General comments on system performance, environmental effects and any required mitigation
- Abstraction and injection
- Hydraulic responses
- Injection plume tracking
- Hydrogeochemical responses
- Compliance with conditions of resource consent
- Emerging contaminants testing
- Recommendations for any changes to the current management, mitigation and monitoring schedule.

Monitoring rounds and subsequent reporting is planned to be undertaken four times during 2020. The findings are listed in Table 1. Water quality test results are included in Attachment 3.

Table 1: Gisborne MAR stage 2 injection trial report.

General							
Report number	04						
Reporting period	August 2020						
Monitoring period	14 October 2019 – 27 July 2020						

Findings

Stage 2 injection started in August 2019. In addition, the injection plume from the 2017 and 2019 injection trials is still present around the injection well and can be tracked with monitoring wells GPE065, GPE067, GPE068 and GPE069 (see map below).

General conclusions that can be drawn so far are as follows:

- There are signs of progressive clogging caused by fines within the source water (Waipaoa River water) used for injection. Specific capacity, a measure for well performance, declined from 4.0 L/s/m at the start of the 2020 injection trial to 1.8 L/s/m in mid-June 2020, which is lower than values recorded in the 2019. However, well backwashing cycles were undertaken in July 2020 and the injection specific capacity appear to have improved to approximately 2.5 L/s/m. The continuation of frequent well backwashing during injection is recommended, which should occur at least once per week (with each backwashing cycle the injection well is pumped at 10 to 15 L/s for approximately 1 hour until pumped water runs visually clean).
- Results from all monitoring rounds between October 2018 to June 2020 indicate the injection plume resulting from the 2017, 2019 and 2020 trials is still present at GPE066 (injection well), GPE065, GPE067 and GPE068 (within 330 m distant downgradient from injection well). Ambient groundwater appears to be only present at GPE069 (194 m distant upgradient from injection well) currently, which is reflected in the recorded water quality signature.

Findings

- The water quality signature of GPE065, GPE067 and GPE068 are all gradually becoming more similar as the centre of the injection plume encompasses the entire area between these monitoring wells. As injection continues, it is expected that all three of these monitoring wells will eventually have the same water quality signature as Waipaoa River water.
- Breakthrough of the MAR injection plume would appear to have occurred in downgradient irrigation well GDP189 at about 1 km southeast from the injection well. However, this well is 83.3 m deep and possibly not screened in the Makauri Aquifer. Water quality of irrigation well GPD115 at 1.5 km southwest of the injection well represents ambient groundwater. Golder recommends more frequent sampling and testing of both wells. This will help confirm whether breakthrough has reached these wells.
- There are no indications of adverse water quality effects within the current injection plume (present since July 2017) based on the results of water quality monitoring rounds between October 2018 and June 2020. Total and dissolved arsenic concentrations in the injection plume remain below levels measured in native groundwater. The injection plume water is less mineralised and likely to be less corrosive and more suitable for irrigation purposes than native groundwater.
- Where pathogens are clearly present at high levels in Waipaoa River water on occasion, this is generally not the case in the groundwater monitoring wells located within the 2017, 2019 and 2020 injection plume. Although some pathogens tested positive in groundwater at low levels, as previously reported³. Rapid die-off limits the spread of pathogens within groundwater.
- No mitigation for protection against any adverse effects on the aquifer's water quality is deemed necessary based on the monitoring results to date.
- The test results suggest emerging contaminant are present in the Waipaoa River. The monitoring also shows a progressive rise in total emerging contaminant load in the injection plume although concentrations remain very low (i.e., in order of ng/L). If emerging contaminants are present in the MAR source water (Waipaoa River) they will enter the groundwater system. If no natural decay occurs, these emerging contaminants will remain present within the injection plume, which will grow in size, as the MAR injection progresses. It is noted that natural recharge processes will inevitably cause emerging contaminants to enter the groundwater system and that ambient groundwater may already contain emerging contaminants. Therefore, we recommend a further review, as well as sampling and testing for emerging contaminants and Suite 2 parameters (Attachment 2) of up to 3 existing upgradient wells that are at sufficient distance away from the injection well (to not be influenced by the injection plume) and screened in the Makauri Aquifer. Potential wells to sample and test could be GPE058, GPE023, GPE038 west of SH2 / Matawai Rd; or GPF147 and GPF111 along Tucker Rd. This would help to better understand existing levels of emerging contaminants within the ambient groundwater.
- The injection of MAR water in 2020 has not fully comply with river abstraction condition 16 to 19 of the resource consent which enables the trial. River water was abstracted for two days when the flows in the Waipaoa River were below minimum flows of 4,000 L/s. However, all other conditions related to injection water quality and injection flows are currently being met.

³ Golder Letter Report No.: 1898725-7403-007-LR-Rev0 (25/9/2019)

Findings

Golder identified quality control issues

Abstraction and Injection

Injection Period: Winter 2019 to early spring 2019

Volume taken from river	Average river take rate	Maximum river take rate				
40,658 m ³	13.9 L/s	21.6 L/s				
Volume injected	Average injection rate	Maximum injection rate				
39,881 m ³	13.8 L/s	19.8 L/s				
Backwash volume	N/A (Filter backwashing and line flushing: 777 m ³ ; injection well backwashing: N/A)					
Injection period	5 August 2019 to 13 October 201	9				
Total injection period duration	69 days					
Number of days of injection	33 days					
Average injection turbidity	3.67 NTU					

Injection Period: Winter 2020 onwards

Volume taken from river	Average river take rate	Maximum river take rate				
25,838 m ³	14.3 L/s	20.6 L/s				
Total volume injected	Average injection rate	Maximum injection rate				
25,406 m ³ (net volume injected*: 24,703 m ³)	14.2 L/s	19.9 L/s				
Backwash volume	1,135 m ³ (Filter backwashing and line flushing: 432 m ³ ; injection well backwashing and performance testing: 703 m ³)					
Injection period	12 May 2020 to 16 July 2020 and	l ongoing (as per 27 July 2020)				

Total injection period duration	76 days
Number of days of injection	21 days
Average injection turbidity	3.75 NTU

* Water is occasionally abstracted from the well for backwashing and performance testing. The net volume injected is the difference between the total volume injected and the injection well backwashing and performance testing volume.

Injection Well Performance

The injection and abstraction performance of the MAR injection well GPE066 can change over time. Clogging can cause the performance to gradually deteriorate and periodic well remediation will be required. Potential clogging occurs from the injection of sediment-laden water, but could also be caused by the deposition of iron sulphides on the well screen, as was confirmed to have occurred during the idle phase (i.e., October 2017 and August 2019), and was remediated by air-lifting in May 2019.

The specific capacity provides an indication of well performance. The specific capacity for abstraction (i.e., the flow rate per metre drawdown) differs from the specific capacity for injection (i.e., the flow rate per metre per metre rise) for most wells. In general, abstraction specific capacities are higher. Both can be tracked over time to review changes in well performance. To compare results, the specific capacity test has to be undertaken at similar flow rates and length of time. Comparable test results for abstraction specific capacity are available from August 2019 onwards and results are shown in the table below.

Abstraction well performance

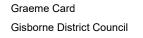
Well performance appear to have deteriorated after the 2019 injection trial, with specific capacities being lower between October 2019 and March 2020, than they were before the injection trial in August 2019. However, there is no indication that the idle phase between October 2019 and March 2020 has resulted in a significant further deterioration of well performance due to clogging during that period. As such, the injection of sediment-laden river water appears to be the main driver for clogging and reduction in well performance.

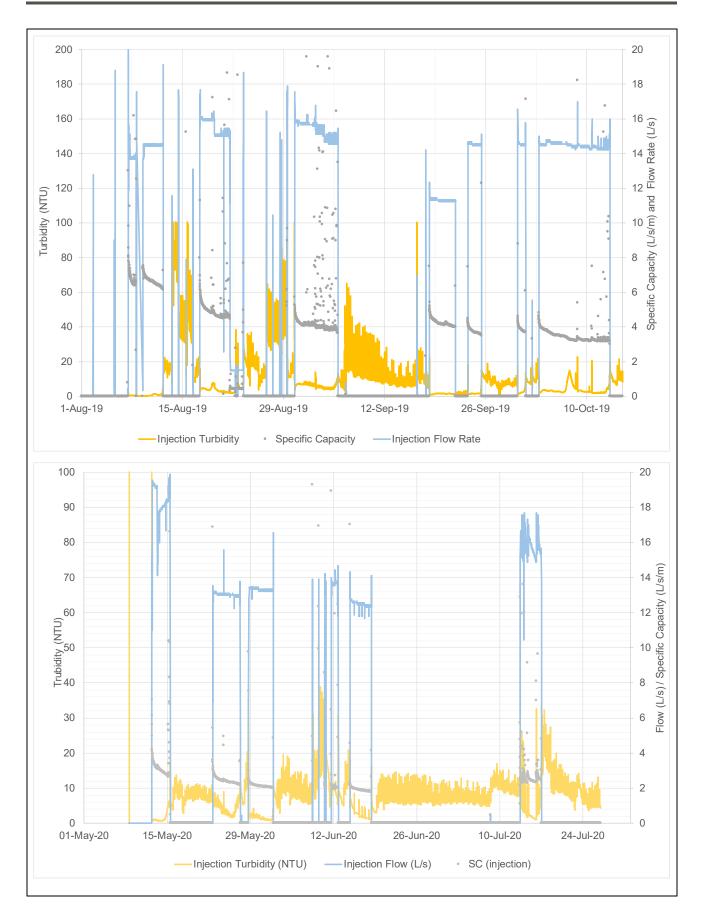
Date	Duration (mins)	Average Rate (L/s)	Average Specific Capacity (L/s/m)
02/08/2019	120	15.2	5.41
18/10/2019	130	14.6	4.46
13/11/2019	130	15.6	4.58
03/03/2020*	120	15	4.10

test with 4 steps of 120 minute each; the last step was undertaken at a flow rate of 15 L/s.

A more comprehensive well performance test is a stepped rate pumping test. Stepped rate pumping (abstraction) testing was undertaken in May 2017 when the injection well was installed, and again in March 2020. A comparison of the results of these two stepped rate tests suggest well performance of the injection well has improved since the previous testing in 2017. However, gas clogging affected the 2017 stepped rate test and this has not occurred in the 2020 test and therefore the results may not be fully comparable. A further stepped rate pumping test is recommended during or after completion of the 2020 injection trial.

Injection well performance


The Scott Tech telemetered monitoring system for the Gisborne MAR injection well provides continuous data on injection flows, injection turbidity levels and injection well water level responses. Reductions in well performance from clogging can be analysed by reviewing the specific capacity (SC in L/s/m) of the well, which equals the flow rate (Q in L/s) divided by the associated drawdown (dH in m):


$$SC = \frac{Q}{dH}$$

In case of injection, the injection flow rate and the subsequent rise in well water level are used to derive the injection specific capacity. The injection specific capacity can be tracked throughout the Stage 2 injection trial. The first graph below shows the progression of the specific capacity in the 2019 injection period, together with injection flow rate and injection turbidity level (turbidity is shown as this represents the most dominant type of well clogging). There is a general decline in injection specific capacity from approximately 6 L/s/m at the beginning of the injection period to approximately 3 L/s/m at the end. Injection flow rates varied from approximately 15.5 L/s in the first half of the trial to 14.5 L/s in the second half.

It should be considered that specific capacity is generally lower at higher injection rates, so a decline in the specific capacity at reduced injection rates is a sign of ongoing well performance loss due to clogging.

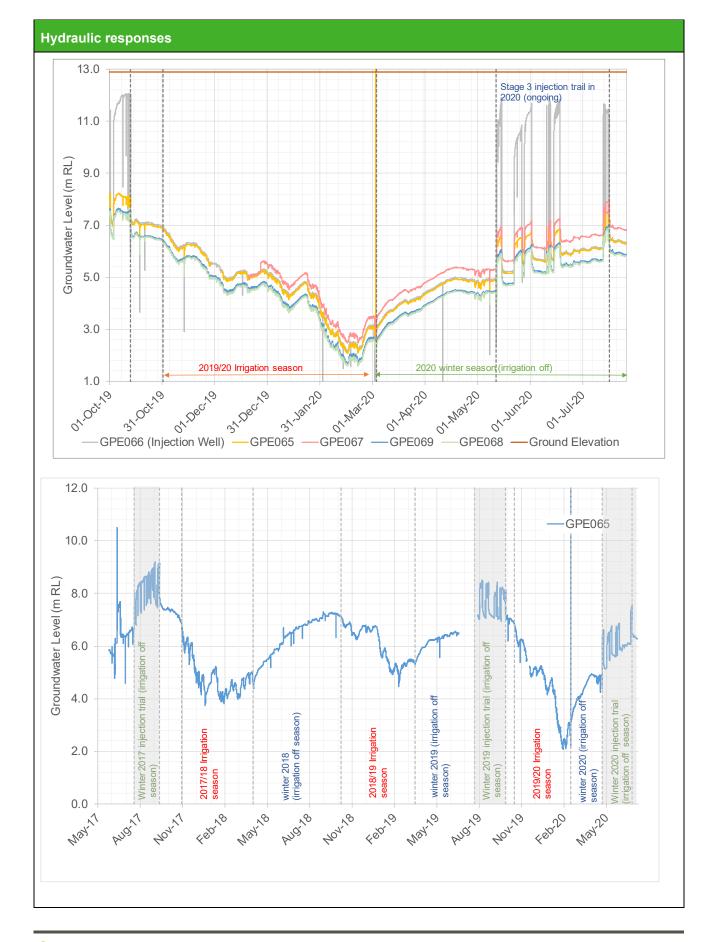
The second graph below shows the progression of the specific capacity in the 2020 injection trial. Specific capacity declined from 4.0 L/s/m at the start to 1.8 L/s/m in mid-June 2020, which is lower than recorded in the 2019 injection period. Injection rates reduced from approximately 19 L/s at the beginning on injection in May 2020 to 12 L/s in mid-June 2020. However, well backwashing cycles were undertaken in July 2020 and the injection specific capacity appear to have improved to approximately 2.5 L/s/m, with injection rates around 16 L/s.

Recommendation

The continuation of well backwashing during the remainder of the injection trial is recommended to be undertaken at least once per week. Backwashing should be for approximately 1 hour (but at least 30 minutes) at 10 to 15 L/s until the pumped water runs visually clean. Continuation of periodic well backwashing should be considered during times that no injection can occur (e.g., when river turbidity levels are high). Specific capacity testing and stepped rate pumping testing are in effect backwashing events, and as such performance testing and backwashing events can be combined.

Hydraulic responses

Groundwater level responses


Makauri Aquifer water levels⁴ in m RL in injection well GPE066 and monitoring wells GPE065, GPE067, GPE068 and GPE069 are shown in the graph below for the October 2019 – July 2020 period. GPE067 groundwater data can be retrieved from the logger in the field, and this data has been uploaded to the HillTop database by GDC. Whilst a complete data set is available for electrical conductivity (EC), the water level data set has a gap between 21 September and 20 December 2019 for GPE067. All other groundwater levels presented have been downloaded from the Gisborne MAR telemetry website. Note that GPE066 and GPE065 groundwater levels are almost identical and cannot be distinguished. GPE068 and GPE069 groundwater levels are also very similar although a slight difference is visible.

Groundwater levels decreased notably during the 2019/2020 irrigation season between November 2019 and March 2020. The recorded groundwater levels were the lowest since monitoring commenced in 2017, which suggest the irrigation season was relatively dry and more abstraction for irrigation may have been needed. In autumn and winter (i.e., irrigation off season) the groundwater levels rise again as shown in the graph since March 2020. The response to the MAR injection trial since May 2020 is clearly visible in all monitoring wells. Injection well (GPE066) water levels reach to approximately 0.5 m below the ground surface during injection, but injection water levels appear to have declined somewhat following well backwashing in July 2020, which suggest better well performance.

Groundwater elevation obtained from telemetry shown in the graph above indicates the direction of groundwater flow is to the south west. This is inconstant with previous groundwater level assessments. As mentioned in earlier reports, we recommend reviewing and re-surveying the top of casing elevation of all monitoring wells in due course. In addition, GPE067 which is at greater distance from the injection well than GPE065, would unlikely reach a higher groundwater level in m RL than GPE065 in response to injection, which the graph suggests.

Longer term overview of the Gisborne MAR injection pilot project and groundwater level responses in monitoring well GPE065 from seasonal changes (summer irrigation abstraction and winter recharge) and injection trials is shown in the second graphs below.

⁴ The ~70 m deep Makauri Aquifer is a semi-confined naturally pressurised aquifer with aquifer water levels rising well above the top of the aquifer at the site.

Graeme Card

Injection Plume Tracking

Quality Control Issues

Golder identified several issues with the water level and water quality data provided and these are listed below.

Golder recommends the following are corrected:

- The reference levels used to derive groundwater levels in m RL for the 4 monitoring wells (GPE065, GPE067, GPE068 and GPE069) and the injection well (GPE066) appear to be incorrect. Golder recommends these are reviewed by confirming depth of logger below reference point, and confirming reference point elevation in m RL.
- No sampling of GPD189 and GPD115 has been undertaken, although injection plume breakthrough to wells further afield can now be expected. Golder recommends these two wells are included in future sampling rounds. It is noted that GPD189 may not be screened in the Makauri Aquifer, but in the Matokitoki Aquifer.
- The 26 May 2020 chloride concentration for GPE069 (i.e., 249 mg/L shown in both the HillTop database and in lab report) is likely to be incorrect, as this has both previously and subsequently been below 150 mg/L consistently. Furthermore, no other parameter shows a sudden rise for this well for the 26 May 2020 monitoring round. Golder understands GDC sought clarification from the lab and the lab confirmed the initially reported chloride concentration was an error. A revised lab report will be issued.
- Waipaoa River water was sampled from the infiltration chamber on 6 May 2020, but not tested for metals. Golder recommends sampling and Suite 2 testing of Waipaoa River water for the next sampling round.
- The EC level of 26 May 2020 for GPE067 (i.e., 68 µS/cm) is likely to be incorrect, as no EC level in either the river water or the ambient groundwater within any of the wells has been recorded this low at the MAR site. The salinity level of 0.33 ppt recorded in GPE067 suggest the EC level is likely to have been 680 µS/cm, which has been assumed. We recommend that this is corrected in the HillTop database.

Further issues are listed below, but no corrections are recommended at this stage, as these would not change the general conclusions in this report:

- There is a gap in the water level data set retrieved from the logger in GPE067 between 21 September and 20 December 2019. Replacement of the water level logger in that monitoring well may be necessary.
- Negative DO levels are recorded during the 26 May 2020 monitoring round in the field. An error with the measuring instrument has been assumed.
- No suite 1 or 2 sampling (specified in Attachment 2) was undertaken of the source water (i.e., Waipaoa River water) in the June 2020 sampling round.

Injection Plume Tracking

Injection Plume Tracking

As with field testing results from between September 2018 and September 2019, the recent results from October 2019 to June 2020, listed in the table below, show a clear difference in water quality in all four monitoring wells, with GPE065 still most akin to the injected Waipaoa River water and GPE069, representing native groundwater in the Makauri Aquifer at this site.

Monitoring well	Sample date	Temperature (°C)	DO (%)	DO (mg/L)	EC (uS/cm)	рН (-)	Turbidity* (NTU)
October 2019							
Waipaoa River at Infiltration Chamber	14-10-19	14.8	98	9.92	373	7.88	260
GPE065	14-10-19	15.1	0.1	0.01	494	7.33	0.25
GPE067	14-10-19	15.0	0.3	0.03	824	6.97	22
GPE069	14-10-19	15.3	0.1	0.01	1,455	6.59	55
GPE068	14-10-19	14.9	0.3	0.03	941	6.8	40
November 2019							·
GPE065	11-11-19	15.4	0	0	517	7.59	8.6
GPE067	11-11-19	15.3	0.2	0.02	761	7.26	24
GPE069	11-11-19	16.5	0.1	0.01	1,455	6.98	50
GPE068	11-11-19	17.1	0.3	0.03	949	7.18	4.3
May 2020							
Waipaoa River at Infiltration Chamber	06-05-20	11.6	97.2	10.56	453	8.42	700
GPE065	06-05-20	14.6	0.5	0.05	557	7.54	39
GPE067	06-05-20	14.4	0.8	0.08	705	7.39	12
GPE069	06-05-20	14.7	1	0.1	1,385	7.25	60
GPE068	06-05-20	14.9	1	0.1	728	7.4	14

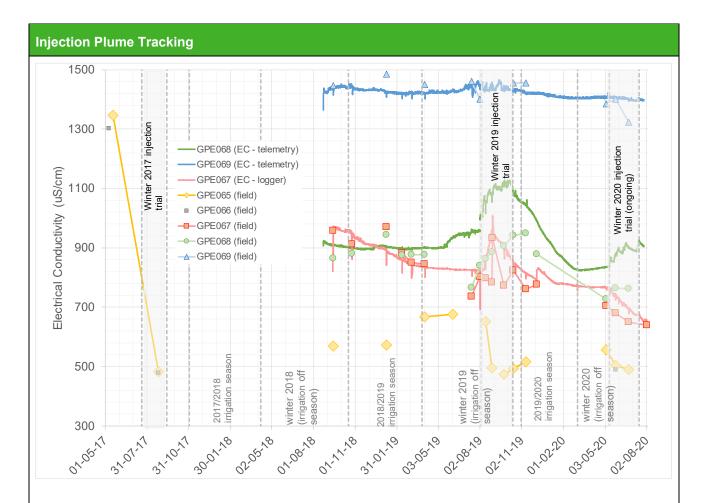
ection Plume Trackir	ıg										
Monitoring well	Sample date	Temperature (°C)	DO (%)	DO (mg/L)	EC (uS/cm)	рН (-)	Turbidity [*] (NTU)				
(commence injection	(commence injection on 13 May 2020)										
MAR headworks (Waipaoa River water)	26-05-20	13.9	70.5	7.26	490	7.56	4.1				
GPE065	26-05-20	14.9	0.8	0.08	503	7.51	0.2				
GPE067	26-05-20	15.0	-	-	680**	7.25	9.1				
GPE069	26-05-20	15.0	-	-	1,401	6.89	60				
GPE068	26-05-20	15.3	-	-	764	7.11	25				
June 2020											
GPE065	24-06-20	14.4	0.6	0.06	490	7.52	0.60				
GPE067	24-06-20	14.5	1.6	0.16	650	7.3	12				
GPE069	24-06-20	14.7	1.2	0.12	1,324	6.98	60				
GPE068	24-06-20	14.7	1.1	0.11	762	7.22	26				
Monitoring well	Sample date	Temperature (°C)	DO (%)	DO (mg/L)	EC (uS/cm)	рН (-)	Turbidity [*] (NTU)				
Pre-injection trial (M	ay 2017)										
GPE065	17-05-17	-	-	-	1,347	-	-				
GPE066 (injection well)	08-05-17	-	-	-	1,302	-	-				

subsequent recordings

EC levels prior to the winter 2017 MAR injection trial in GPE065 and GPE066 (injection well) are similar to those recorded in GPE069 in all sampling rounds between September 2018 and September 2019, suggesting the 2017 injection plume has so far not reached GPE069. The other two wells (GPE067 and GPE068) show various degrees of dispersive mixing between injected river water and native groundwater. Nonetheless, GPE065, GPE067 and GPE068 appear to gradually become more similar and will at some

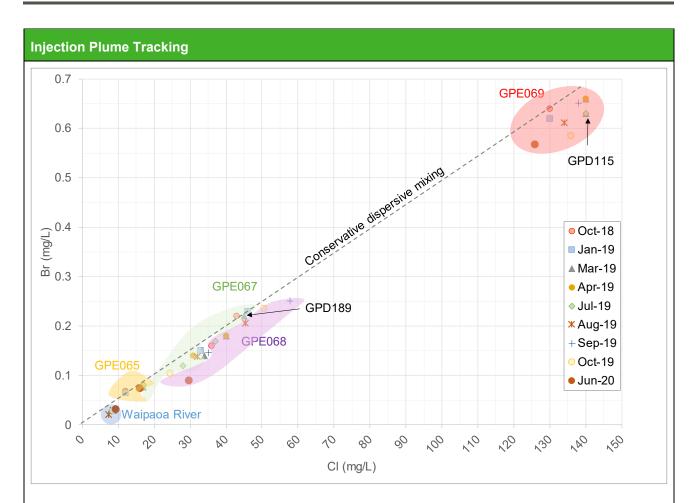
Injection Plume Tracking

stage be akin to Waipaoa River water as the centre of the plume fully covers the area in which these monitoring wells are installed.

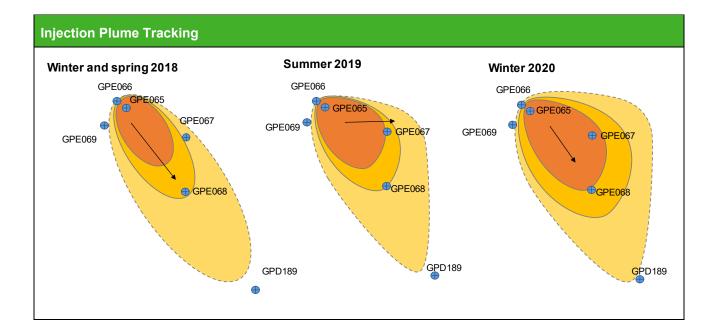

Oxygen (O₂) concentrations in all four monitoring wells (GPE065, GPE067, GPE068 and GPE069) are low (i.e., EC less than 1 mg/L) in the October 2019 to June 2020 sampling rounds and this reflects the reactiveness of organic matter present in the native groundwater causing oxygen within the injected water to be quickly consumed. This is as expected.

Field recorded EC levels between October 2019 and July 2020 appear to show similar trends as the conductivity logger recordings in GPE065, GPE067 and GPE068, as shown in the graph below. The following trends can be observed:

- EC levels are more or less stable in GPE069, which is the upgradient monitoring well generally unaffected by water quality change from injection.
- With each injection cycle the EC levels in GPE065, which is nearest to the injection well, will decline as . river water is pushed towards this well. This is followed by a gradual increase after injection ceases.
- Summer irrigation abstraction will cause an eastward flow direction and injection plume water with lower EC levels will be drawn to GPE067 and GPE068, thus lowering EC levels in those wells.
- EC levels in GPE067 and GPE068 will rise suddenly when injection recommences in the winter as more mineralised ambient groundwater with higher EC levels is pushed towards these wells from upstream, thus increasing EC levels in those wells.
- EC levels of GPE065, GPE067 and GPE068 are all gradually decreasing and the water quality in these wells is becoming more akin to river water as the plume gradually expands.


As noted previously, field testing EC values are notably lower for GPE067 and GPE068 than the conductivity logger recordings since August 2019. It is unclear what the cause is, and recalibration of both the field monitoring equipment and EC loggers is recommended.

When plotting the Bromide (Br) against the Chloride (Cl) concentrations (see top graph below), the progressive dispersive mixing is also apparent. The dotted line in the graph represents mixing between river water and native groundwater, which have very different compositions of Cl and Br. For components that are not subject to chemical reactions (which is the case for Br and Cl), any degree of mixing between these two water types will result in a mixture with a Br and Cl levels that plots on this line. Any deviation from this line may point to ongoing biological or chemical reactions causing depletion or enrichment of either component. No such deviation is indicated from the results for Br and Cl in any of the monitoring rounds between October 2018 to July 2020. In addition, the recent monitoring data from 2019 and 2020 sampling rounds clearly fit on the progressive dispersive mixing line (graph below).


A shift in water quality signature is observed in GPE067 in comparison to GPE068 was noted following the March 2019 sampling round as reported previously. A higher degree of dispersive mixing was observed in GPE067 than in GPE068 prior to March 2019, although GPE068 is at greater distance from injection well then GPE067. This has changed since March 2019, with GPE067 becoming more akin to the injection water.

The shift in water quality signature of GPE067 is caused by a change in direction of the 2017 injection plume due to summer abstraction for irrigation to the east of the MAR site. GPE067 was at the fringe of the injection plume in winter and spring 2018, but this shifted as the injection plume was drawn eastwards. This process has progressed further in the course of 2019 and 2020, and the water quality signature of GPE065, GPE067 and GPE068 are all gradually become more akin as the centre of the injection plume covers the entire area between these monitoring wells. If injection trials continue all three of these monitoring wells will have the same water quality signature as Waipaoa River water.

Whilst GPD189 has a similar Br/Cl ratio as GPE067 and GPE068, it is not clear if the injection plume as reached this well. Given its depth of 83.3 m, this well may not be screened in the Makauri Aquifer.

Concentration contour changes with time are conceptually depicted in the figure below.

Hydrogeochemical responses

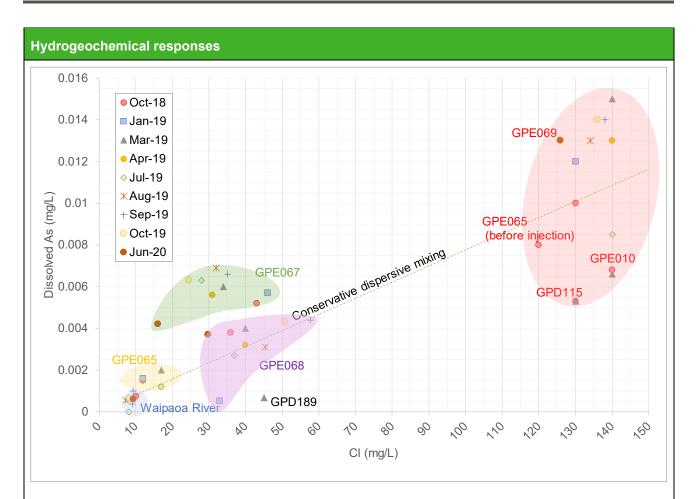
General

Processes described in previous monitoring reports have progressed as expected. For reporting purposes, the relevant processes and trends are described again below and graphs updated.

Redox state


The dissolved oxygen (DO) concentration in the aquifer is less than 1 mg/L, which suggests most oxygen has been consumed in the generally anoxic Makauri Aquifer.

In the graphs below, the nitrate-N (NO₃) and sulphate (SO₄) have been plotted against the chloride (CI) concentration. Median values for Waipaoa River water and GPE065 water prior to the 2017 injection, have been included in the graph as well. Both the concentration of NO₃ and SO₄ fall more strongly than what would be expected from conservative dispersive mixing. Furthermore, NO₃ shows a sharper fall than SO₄ and appears to be entirely depleted in all monitoring wells since the January 2019 sampling round. These trends are consistent with reduction processes in which NO₃ is typically targeted first as a source oxygen (i.e., denitrification) followed by iron and manganese oxides (i.e., iron reduction) and then SO₄ (i.e., sulphate reduction). Pyrite oxidation would have resulted in a sulphate increase, as noted in previous monitoring reports, and this does not seem to occur in any of the three monitoring rounds between March and July 2019. The same shift in GPE067 and GPE068 water quality signature towards injection water, as explained above can be observed in these graphs.

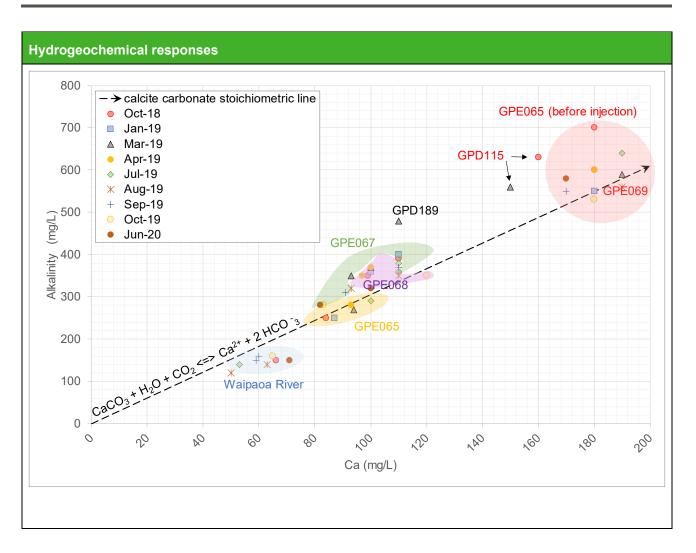

Hydrogeochemical responses 0.6 Oct-18 Jan-19 ▲ Mar-19 0.5 • Apr-19 ♦ Jul-19 Waipaoa River XAug-19 0.4 Conservative dispersive mixing +Sep-19 NO3-N (mg/L) Oct-19 • Jun-20 0.3 ж **GPD189** 0.2 **GPE065** 0.1 + • **GPE069 GPE067** GPE065 (before injection) **GPE068** ● ● 米○+<u>♀</u> 0 X +,00 30 1,50 0 0 20 S Nº 60 6 10 8 0 20 , AO GPD115 CI (mg/L) 90 Oct-18 Waipaoa River (July 2017) 80 Jan-19 ▲ Mar-19 70 • Apr-19 ♦ Jul-19 Δ 60 XAug-19 + Sep-19 0 Conservative dispersive mixing (T/bu) 50 40 Oct-19 X O GPE068 **GPE065** • Jun-20 ●Ж **GPE067** 30 20 10 **GPE069 GPE065** (before injection) GPD189 0 `. Ж Δ ~20 ,00 ~~0 1AO 0 0 20 S 20 50 0 10 8 0 30 150 GPD115 CI (mg/L)

Hydrogeochemical responses

Where iron concentrations appeared to decrease in GPE067 and GPE068 in the March 2019 monitoring round relative to the October 2018 and January 2019 rounds. This trend seems to have reversed in the April and July 2019 sampling rounds. More recent sampling results from the August 2019 to June 2020 show further fluctuations and a gradual shift of both the GPE067 and GPE068 water quality signature towards that of GPE065 and river water. The changes in iron concentrations appear to be associated with changes in groundwater flow direction as described above, and not due to hydrogeochemical reactions.

As observed in the previous monitoring rounds in October 2018 and January 2019, significant arsenic mobilisation (a concern with pyrite oxidation) does not seem to occur, as suggested by the graph below. Concentrations are highest in GPE069 with a composition similar to native groundwater for the other parameters. The low arsenic concentration in GPE068 in the January 2019 round appears to be inconsistent with previous and subsequent arsenic concentrations recorded in this well. It is considered that the variability in arsenic concentrations of the native groundwater, reflected by the results for GPE069. There is no indication of arsenic release by hydrogeochemical processes associated with the injection trial.

Cation Exchange


In the graph below, sodium (Na) concentration is plotted against the chloride (Cl) concentration. The sodium appears to increase more readily than would be expected from 'conservative' dispersive mixing (e.g., Br/Cl relationship). This is due to the high calcium concentration in injected river water compared to the concentration in native groundwater. Cation exchange will result in calcium ions replacing sodium ions within exchange complexes in the sediments, which are subsequently released to the groundwater. This process is referred to as 'freshening' and the data from all monitoring rounds between October 2018 and June 2020 indicate that this process is ongoing.

Hydrogeochemical responses 100 GPE065 (before injection) **GPD115** 90 80 **GPE067** Conservative dispersive mixing **GPE069** 70 **GPD189** • 60 Na (mg/L) Frestering GPE068 Oct-18 50 ■ Jan-19 40 ▲ Mar-19 • Apr-19 30 ♦ Jul-19 U ×Aug-19 20 Waipaoa River +Sep-19 Oct-19 10 • Jun-20 0 ~~0 20 ,00 ~A? 0 ~30 150 0 20 3 0 10 00 2 20 00 CI (mg/L)

Carbonates and Carbon Dioxide

In the graph below the calcium (Ca) concentration is plotted against the total alkalinity. The injection of river water results in an increase of both parameters, as particularly highlighted by the October 2018 to June 2020 monitoring data for GPE067 and GPE068. It is considered that this is not the result of dispersive mixing, but is a result of calcite carbonate reactions. Carbon dioxide (CO₂) is produced from the oxidation of organic matter by oxygen in the infiltrated river water. This shifts the calcite dissolution reaction indicated in the graph to the right (calcium carbonate stoichiometric relationship represented by the straight line), and both calcium and alkalinity (expressed as HCO₃⁻) will increase. However, CO₂ pressures within the injection plume appear to remain well below those present in the ambient groundwater, as shown by the distinctively higher Ca/Alkalinity concentrations in GPE069.

The October 2018 to June 2020 monitoring data shows some change in Ca/alkalinity ratio in all wells but most notably in GPE069 (i.e., native groundwater), suggesting variability in the native groundwater composition.

Compliance

Compliance with conditions in relation to the Stage 2 Injection Trial include the following matters:

- Surface water take and use
- Water use monitoring
- Discharge of water to the Makauri Aquifer

The Gisborne MAR resource consent for the current Stage 2 injection pilot project is included in Attachment 4. Compliance has been reviewed for the key conditions listed below.

Condition 16 to 19 of the resource consent require the following:

- The daily quantity of water taken from Waipaoa River for the purposes of the pilot trial shall not exceed 1901 cubic metres.
- The instantaneous rate of take from the Waipaoa River shall not exceed 22 litres per second at any time.

- Abstraction from the Waipaoa River shall only occur when the flow at Kanakanaia and Matawhero, as measured by Gisborne District Council is greater than 4000 litres per second.
- Abstraction from the Waipaoa River:

(a) shall only occur during periods when the flow of the Waipaoa River at Kanakania is greater than 4,000 litres per second; and
(b) shall not occur when the flow of the Waipaoa River at Kanakania has been at or below 4,100

litres per second for a consecutive period of 5 or more days; for the duration of this resource consent.

River abstraction rates have been below 22 L/s and below 1901 m³/day at all times during this monitoring period. River abstraction has taken place during river flows generally above 4,000 L/s during this monitoring period. However, between 12 and 14 May 2020 flows were below 4,000 L/s in the Waipaoa River at both the Kanakanaia and Matawhero flow monitoring sites. Approximately 4,000 m³ was abstracted from the river during those 2 days. As such, this injection trial did not fully comply with condition 16 to 19 of the resource consent.

Condition 20 of the resource consent requires the following:

 Water shall only be used for the purpose of completing Phase 2 pilot trial of injecting water into the Makauri Aquifer, or in the case of discharging water to land in accordance with the resource consent application document.

All water abstracted from the river for the Gisborne MAR injection trial has been used for that purpose at all times during this monitoring period.

Condition 27 of the resource consent requires the following:

The rate of water injected into the Makauri Aquifer shall not exceed 22 litres per second and the total volume of water injected under this consent shall not exceed 365,000 cubic metres per year for two years.

Injection rate has been below 22 L/s and total injected volume below 365,000 m³ at all times during this monitoring period.

Condition 31 of the resource consent requires the following:

- No water shall be discharged into the Makauri Aquifer if the following discharge limits have been exceeded:
 - (a) A concentration of E.coli of 100 cfu/100ml; and
 - (b) Turbidity of 50 NTU; or

(c) Any amended limit(s) adjusted with the approval of an independent and suitably qualified and experienced professional and certified by the GDC Manager.

There have been no instances in which E.coli levels of above 100 cfu/100 ml or turbidity above 50 NTU have been injected into the Makauri Aquifer during this monitoring period.

Pathogen Testing

Several indicator pathogen parameters have been tested as part of Suite 4 of the Gisborne MAR monitoring programme, prior to and during the 2020 injection trial. The results are included in the table below.

The results indicate the pathogens can be present at significant levels in Waipaoa River water abstracted by the Kaiaponi irrigation infrastructure. Elevated pathogen levels for Enterococci, E.coli and Faecal Coliforms were recorded on 26 May 2020 in the headworks (Waipaoa River water) which was subsequently injected into injection well GPE066. Both the flow recordings and groundwater level responses show continuous injection on that date. However, E.coli levels were below 100 cfu/100ml and as such the injection did not exceed compliance limits included in the resource consent.

Component	Date	0 6 퍼 Adenovirus 필 것 (presumptive)	Enterococci Pm 001	T not	nts Laecal Coliforms Tu 001	n diagonalic A Somatic M /C coliphage
Prior to 2020 MAR inj	ection trial					
Waipaoa River Intake	14-10-19	-	-	-	-	890
GPE066 (headworks)	14-10-19	-	-	-	-	-
GPE065	14-10-19	<5.0	<1.6	<1.6	<1.6	<1
GPE067	14-10-19	<5.0	<1.6	<1.6	<1.6	<1
GPE068	14-10-19	<5.0	<1.6	<1.6	<1.6	-
GPE069	14-10-19	<5.0	<1.6	<1.6	<1.6	-
Waipaoa River Intake	06-05-20	-	2000	1400	1400	-
GPE065	06-05-20	-	<1.6	<1.6	<1.6	-
GPE067	06-05-20	-	<1.6	<1.6	<1.6	-
GPE068	06-05-20	-	<1.6	<1.6	<1.6	-
GPE069	06-05-20	-	<1.6	<1.6	<1.6	-
			-			
Waipaoa River Intake	12-05-20	-	-	-	-	66
GPE066 (headworks)	12-05-20	-	-	-	-	9
GPE065	12-05-20	-	-	-	-	<1
GPE067	12-05-20	-	-	-	-	<1
GPE068	12-05-20	-	-	-	-	<1
GPE069	12-05-20	-	-	-	-	<1

Compliance with Conditions of Resource Consent								
Component	Date	Adenovirus ∀ ∠ (presumptive)	Enterococci	scherichia coli	bp Faecal coliforms	A Somatic Coliphage		
		100 mL	100 mL	100 mL	100 mL	100 mL		
During 2020 MAR inje								
Waipaoa River Intake	26-05-20	-	-	-	-	-		
GPE066 (headworks)	26-05-20	-	20	33	34	-		
GPE065	26-05-20	-	<1.6	<1.6	<1.6	-		
GPE067	26-05-20	-	*	<1.6	<1.6	-		
GPE068	26-05-20	-	<1.6	<1.6	<1.6	-		
GPE069	26-05-20	-	<1.6	<1.6	<1.6	-		
			I	1				
Waipaoa River Intake	02-06-20	-	-	-	-	-		
GPE066 (headworks)	02-06-20	-	-	-	-	-		
GPE065	02-06-20	-	-	-	-	<1		
GPE067	02-06-20	-	-	-	-	<1		
GPE068	02-06-20	-	-	-	-	<1		
GPE069	02-06-20	-	-	-	-	<1		
Waipaoa River Intake	24-06-20	-	-	-	-	95		
GPE066 (headworks)	24-06-20		-	-	_	_		
GPE065	24-06-20	-	<1.6	<1.6	<1.6	<1		
GPE067	24-06-20	-	<1.6	<1.6	<1.6	<1		
GPE068	24-06-20	-	<1.6	<1.6	<1.6	<1		
GPE069	24-06-20	-	<1.6	<1.6	<1.6	<1		

*Suspect result of 210 cfu/100mL reported by lab; not adopted as it appears to be an anomaly inconsistent with any other pathogen test results for groundwater in the 2018 – 2020 period.

No bacterial contamination has been recorded in GPE065, GPE067 and GPE068 before the start of the 2020 injection trial although injection plume water from the 2019 injection trial would have been still present there. No bacterial contamination has been recorded in any of the monitoring wells GPE065, GPE067 and GPE068 during the 2020 injection trial, despite GPE066 (headworks, i.e., source water) was tested positive for Enterococci, E.coli and Faecal Coliforms in the 26 May 2020 monitoring round, and Waipaoa River intake water for somatic coliphages in the 24 June 2020 monitoring round.

Where pathogens are clearly present at high levels in Waipaoa River water on occasion, this is generally not the case in the groundwater monitoring wells located within the 2017, 2019 and 2020 injection plume,

although some pathogens test positive in groundwater at low levels as previously reported. From previous reports, a rapid die-off is expected, and this limits the spread of pathogens within groundwater.

Emerging Contaminants Testing

GDC has tested Waipaoa River and groundwater for several groups of 'emerging contaminants', including dioxins, personal care products & pharmaceuticals (PCP&P's), pesticides and some other chemicals. Results for the October 2019 to June 2020 period are listed in the table below.

	Sample Date/Time	Caffeine (ng/L)	Cotinine (ng/L)	Paracetamol (ng/L)	Triclosan (ng/L)	Carbamazepine (ng/L)	Lamotrigine (ng/L)	Metaprolol (ng/L)	Norcotinine (ng/L)	Sulfamethoxazole (ng/L)	Trimethoprim (ng/L)
Prior to 2020 MA	R injection	trial									
Waipaoa River at infiltration chamber	14-10-19	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5
GPE065	14-10-19	149	6.8	58	<0.5	<0.5	<0.5	< 0.5	<1	<0.5	<0.5
GPE067	14-10-19	19	9.4	1.7	<0.5	<0.5	<0.5	< 0.5	<1	<0.5	<0.5
GPE068	14-10-19	<0.5	<0.5	<2	<0.5	<0.5	<0.5	< 0.5	<1	<0.5	<0.5
GPE069	14-10-19	25	8.3	3.4	< 0.5	< 0.5	<0.5	< 0.5	<1	< 0.5	<0.5
0. 2000			0.0	•••	0.0	0.0	0.0	0.0		0.0	0.0
Waipaoa River at infiltration chamber	06-05-20	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5
GPE065	06-05-20	<0.5	<0.5	<2	<0.5	<0.5	<0.5	< 0.5	<1	<0.5	<0.5
GPE067	06-05-20	< 0.5	< 0.5	<2	< 0.5	< 0.5	< 0.5	< 0.5	<1	< 0.5	< 0.5
GPE068	06-05-20	10	<0.5	<2	< 0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5
GPE069	06-05-20	<0.5	<0.5	<2	< 0.5	<0.5	<0.5	< 0.5	<1	<0.5	<0.5
					1						

Emerging Contaminants Testing											
	Sample Date/Time	Caffeine (ng/L)	Cotinine (ng/L)	Paracetamol (ng/L)	Triclosan (ng/L)	Carbamazepine (ng/L)	Lamotrigine (ng/L)	Metaprolol (ng/L)	Norcotinine (ng/L)	Sulfamethoxazole (ng/L)	Trimethoprim (ng/L)
During 2020 MA	R injection	trial	•		•	•		-	-		
MAR headworks	26-05-20	3	10	<2	<0.5	<0.5	<0.5	<0.5	8	<0.5	<0.5
GPE065	26-05-20	30	20	20	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5
GPE067	26-05-20	5	20	3	<0.5	<0.5	<0.5	<0.5	<1	<0.5	0.7
GPE068	26-05-20	60	20	40	<0.5	<0.5	<0.5	<0.5	<1	0.9	<0.5
GPE069	26-05-20	20	20	10	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5
MAR	04.00.00										
headworks	24-06-20	-	-	-	-	-	-	-	-	-	-
GPE065	24-06-20	5	3	10	<0.5	1	40	0.9	5	2	< 0.5
GPE067	24-06-20	3	5	6	<0.5	<0.5	3	<0.5	2	<0.5	< 0.5
GPE068	24-06-20	9	9	<2	<0.5	<0.5	0.9	<0.5	6	<0.5	<0.5

Parameters tested positive in the October 2019 to June 2020 period were cotinine, caffeine, paracetamol, carbamazepine, lamotrigine, metaprolol, norcotinine, sulfamethoxazole and trimethoprim. Previously triclosan tested positive in GPE069 on 16 July 2019 (5 ng/l). Cotinine and norcotinine are found in tobacco, caffeine is present in various beverages (such as coffee), and all other parameters listed are pharmaceuticals.

2 <2 <0.5 <0.5 <0.5 <0.5 <1 <0.5 <0.5

The emerging contaminants are encountered in the source water, in the injection plume (GPE065, GPE067 and GPE068), and in the upgradient monitoring well GPE069 which is likely to represent ambient groundwater (although a small fraction of source water could have reached this well through dispersive mixing). The test results suggest a progressive rise in total emerging contaminant load in the injection plume although concentrations remain very low in both the Waipaoa River water and within the injection plume (i.e., in order of ng/L).

If emerging contaminants are present in the MAR source water (Waipaoa River) they will enter groundwater. If no natural decay occurs, these emerging contaminants will remain present within the injection plume which will grow ever large as the MAR progresses. With the Waipaoa River being a major natural source of recharge for the Makauri Aquifer it is inevitable that emerging contaminants will eventually enter the groundwater system via natural processes as well, and may already be present in ambient groundwater.

GPE069

24-06-20

2

Emerging Contaminants Testing

No further conclusions can be drawn from these initial test results. We recommend a further review when more data is available. We also recommend sampling and testing for emerging contaminants and Suite 2 parameters (Attachment 2) of up to 3 existing upgradient Makauri Aquifer wells that are at sufficient distance away from the injection well (to not be influenced by the injection plume) to better understand what levels are currently already present in ambient groundwater. Potential wells to sample and test could be GPE058, GPE023, GPE038 west of SH2 / Matawai Rd; or GPF147 and GPF111 along Tucker Rd.

Recommendations

- The continuation of frequent well backwashing during injection is recommended, which should occur at 1) least once per week. Well backwashing could also be considered during times that no injection can occur because of high river turbidity levels. Specific capacity testing and stepped rate pumping testing are in effect backwashing events, and as such performance testing and backwashing could be combined.
- 2) Golder identified several issues with the water level and water quality data provided and recommend the most critical issues are addressed as listed above.
- Golder recommends more frequent sampling and testing of nearby irrigation wells GPD189 and 3) GPD115 as plume water breakthrough may have already occurred.
- 4) We also recommend a further review of emerging contaminants as well as sampling and testing for emerging contaminants of existing wells that are some distance away from the injection well to better understand what levels are currently already present in ambient groundwater.

Closure

We trust this report provides the information required by GDC to further progress the Gisborne MAR Stage 3 Injection Trial project. For further questions please contact Roger Cudmore (Golder Project Manager, T: 021 22 33 873 / E: rcudmore@golder.com), or else Eric van Nieuwkerk (T: 021 284 7133 / E: evannieuwkerk@golder.com).

Yours sincerely,

Golder Associates (NZ) Limited

*5*611

Eric van Nieuwkerk Senior Hydrogeologist

EVN/JVA/RSC/mt

Photos

Roger Cudmore Principal Environmental Consultant

CC: Peter Hancock (GDC), Niels Hartog (KWR)

Attachments: 1) Report Limitations

- 2) Monitoring Programme Schedule and Parameter Suites
- 3) Water Quality and Aquifer Material Test Reports
- 4) Current Gisborne MAR Injection Trial Resource Consent

https://golderassociates.sharepoint.com/sites/20273g/deliverables/012 - aug 2020 monitoring/rev1/1898725-7403-012-Ir-rev0 monitoring report - august 2020.docx

ATTACHMENT 1

Report Limitations

Report Limitations

This Report/Document has been provided by Golder Associates (NZ) Limited ("Golder") subject to the following limitations:

- This Report/Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Report/Document, in whole or in part, in other contexts or for any other purpose.
- ii) The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Report/Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.
- iii) Conditions may exist which were undetectable given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Report/Document. Accordingly, if information in addition to that contained in this report is sought, additional studies and actions may be required.
- iv) The passage of time affects the information and assessment provided in this Report/Document. Golder's opinions are based upon information that existed at the time of the production of the Report/Document. The Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.
- Any assessments, designs and advice made in this Report/Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Report/Document.
- vi) Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.
- vii) The Client acknowledges that Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. Golder will be fully responsible to the Client for the Services and work done by all of its subconsultants and subcontractors. The Client agrees that it will only assert claims against and seek to recover losses, damages or other liabilities from Golder and not Golder's affiliated companies. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any legal recourse, and waives any expense, loss, claim, demand, or cause of action, against Golder's affiliated companies, and their employees, officers and directors.
- viii) This Report/Document is provided for sole use by the Client and is confidential to it. No responsibility whatsoever for the contents of this Report/Document will be accepted to any person other than the Client. Any use which a third party makes of this Report/Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Report/Document.

ATTACHMENT 2

Monitoring Programme Schedule and Parameter Suites

Suite 1 Parameters: Plume Tracking.

Туре	Full Name	Abbreviation
General	Conductivity	EC (field)
	Temperature	Temp (field)
	Dissolved Oxygen	DO (field)
	рН	pH (field)
	Sum cations & anions	Sum Cat & An
	Alkalinity	ALK
Cations	Total Potassium	к
	Total Calcium	Са
	Total Magnesium	Mg
	Total Sodium	Na
	Total Arsenic	As
	Total Iron	Fe
	Total Manganese	Mn
	Dissolved Arsenic	diss As
	Dissolved Iron	diss Fe
	Dissolved Manganese	diss Mn
Anions	Total Chloride	CI
	Total Sulphate	SO4
	Total Nitrate	NO3
	Total Bromide	Br
	Bicarbonate	НСОЗ

Туре	Full Name	Abbreviation
General	Conductivity	EC (field)
	Temperature	Temp (field)
	Dissolved Oxygen	DO (field)
	рН	pH (field)
	Sum cations & anions	Sum Cat & An
	Alkalinity	ALK
Cations	Total Potassium	К
	Total Calcium	Са
	Total Magnesium	Mg
	Total Sodium	Na
	Total Aluminium	AI
	Total Barium	Ва
	Total Boron	В
	Total Nickel	Ni
	Total Zinc	Zn
	Total Arsenic	As
	Total Iron	Fe
	Total Manganese	Mn
	Dissolved Arsenic	diss As
	Dissolved Iron	diss Fe
	Dissolved Manganese	diss Mn
Anions	Total Chloride	СІ
	Total Sulphate	SO4
	Total Bromide	Br
	Dissolved Reactive Phosphorus	DRP

Suite 2 Parameters: Hydrogeochemistry and Plume Tracking.

Туре	Full Name	Abbreviation
	Total Nitrate	NO3
	Dissolved Ammoniacal Nitrogen	diss NH4
	Nitrite	NO2
	Total Silicon	Si
	Dissolved Sulphur	diss S
	Bicarbonate	HCO3
Other	Total Organic Carbon	ТОС

Suite 3: Emerging Contaminants.

Analyte	Detection Limit	Unit		
Estrogen				
17 alpha-ethynylestradiol	0.02	µg/L		
beta-Estradiol	0.02	µg/L		
Estriol	0.004	µg/L		
Estrone	0.004	µg/L		
Ethinylestradiol	0.04	µg/L		
Total Estrogen	0.004	µg/L		

Analyte	Detection Limit	Unit
Glyphosate & AMPA		
АМРА	0.04	µg/L
Glyphosate	0.04	µg/L

Analyte	Detection Limit	Unit		
Organonitrogen & Organophosphorus Pesticides				
Acetochlor	0.1	µg/L		
Alachlor	0.1	µg/L		
Atrazine desethyl	0.1	µg/L		
Atrazine desisopropyl	0.1	µg/L		
Atrazine	0.1	µg/L		
Azaconazole	0.1	µg/L		
Azinphos methyl	0.1	µg/L		
Benalaxyl	0.1	µg/L		
Bitertanol	0.1	µg/L		
Bromacil	0.1	µg/L		

Analyte	Detection Limit	Unit
Butachlor	0.1	µg/L
Carbaryl	0.1	µg/L
Carbofuran	0.1	µg/L
Chlorfluazuron	0.4	µg/L
Chlorpyrifos methyl	0.4	µg/L
Chlorpyrifos	0.1	µg/L
Chlortoluron	0.1	µg/L
Cyanazine	0.1	µg/L
Diazinon	0.1	µg/L
Dichlofluanid	40	µg/L
Dichlorvos	0.1	µg/L
Difenoconazole	0.1	µg/L
Dimethoate	0.1	µg/L
Diphenylamine	2	µg/L
Diuron	0.1	µg/L
Fenpropimorph	0.1	µg/L
Fluazifop butyl	0.1	µg/L
Fluometuron	0.1	µg/L
Flusilazole	0.1	µg/L
Fluvalinate tau	2	µg/L
Furalaxyl	0.1	µg/L
Haloxyfop methyl	0.1	µg/L
Hexaconazole	0.1	µg/L
Hexazinone	0.1	µg/L
Imazapyr	0.1	µg/L
IPBC	0.1	µg/L

Analyte	Detection Limit	Unit
Kresoxim methyl	0.1	µg/L
Linuron	0.1	µg/L
Malathion	0.1	µg/L
Metalaxyl	0.1	µg/L
Metolachlor	0.1	µg/L
Metribuzin	0.1	µg/L
Metsulfuron	0.05	µg/L
Molinate	0.1	µg/L
Myclobutanil	0.1	µg/L
Naled	1	µg/L
Norflurazon	0.1	µg/L
Oryzalin	4	µg/L
Oxadiazon	0.1	µg/L
Paclobutrazol	0.1	µg/L
Parathion Ethyl	1	µg/L
Pendimethalin	0.1	µg/L
Pirimicarb	0.1	µg/L
Pirimiphos methyl	0.1	µg/L
Prochloraz	0.1	µg/L
Prometryne	0.1	µg/L
Propachlor	0.1	µg/L
Propanil	0.1	µg/L
Propazine	0.1	µg/L
Propiconazole	0.1	µg/L
Pyriproxifen	0.1	µg/L
Quizalofop ethyl	0.1	µg/L

Analyte	Detection Limit	Unit
Simazine	0.1	µg/L
Simetryn	0.1	µg/L
Sulfentrazone	2	µg/L
ТСМТВ	0.1	µg/L
Tebuconazol	0.1	µg/L
Terbacil	0.1	µg/L
Terbufos	1	µg/L
Terbumeton	0.1	µg/L
Terbuthylazine desethyl	0.1	µg/L
Terbuthylazine	0.1	µg/L
Terbutryn	0.1	µg/L
Thiabendazole	0.1	µg/L
Thiobencarb	0.1	µg/L
Tolylfluanide	40	µg/L
Triazophos	0.1	µg/L

Analyte	Detection Limit	Unit				
Pharmaceutical and Personal Care Products						
Acesulfame	20	ng/L				
Atenolol	0.5	ng/L				
Benzophenone	20	ng/L				
Bupropion	0.5	ng/L				
Caffeine	0.5	ng/L				
Carbamazepine	0.5	ng/L				
Ciprofloxacin	20	ng/L				
Cotinine	0.5	ng/L				

Analyte	Detection Limit	Unit
DEET	20	ng/L
Diclofenac	2	ng/L
Diltiazem	0.5	ng/L
Diphenhydramine	20	ng/L
Doxycycline	20	ng/L
Fluoxetine	0.5	ng/L
Gabapentin	0.5	ng/L
Gemfibrozil	0.5	ng/L
Ibuprofen	100	ng/L
Lamotrigine	0.5	ng/L
Metoprolol	0.5	ng/L
Naproxen	20	ng/L
Norcotinine	1	ng/L
Paracetamol	2	ng/L
Sucralose	0.5	ng/L
Sulfamethoxazole	0.5	ng/L
Triclocarban	20	ng/L
Triclosan	0.5	ng/L
Trimethoprim	0.5	ng/L
Varenicline	0.5	ng/L
Venlafaxine	0.5	ng/L

Suite 4: Pathogens.

Туре	Full Name	Abbreviation	Detection Limit	Unit
Indicator bacteria	E. <i>coli</i>	E. coli	1.6	CFU/100 mL
	Enterococcus	Ent.	1.6	CFU/100 mL
	Faecal Coliforms	FC	1.6	CFU/100 mL
Indicator viruses	Somatic Coliphages	SC	1	PFU/100 mL
	Adenovirus	AV	5	MPN/100 mL

Monitoring Schedule.

Round	Date	Parameter Suite	Gisborne MAR trial phase
1	13 September 2018	Field testing only	
2	24 and 26 October 2018	Field testing and suite 2	Idle period between
3	8 January 2019	Field testing and suite 2	2017 and 2019 injection trials
4	5 and 6 March 2019	Field testing and suite 2	(2018-2019 irrigation
5	3 April 2019	Field testing and suite 1	season)
6	15 and 16 July 2019	Field testing and suite 2, 3 and 4	
7	22 July 2019	Suite 3 and 4 testing only	
8	18 July 2019	Field testing and suite 1	
9	22 July 2019	Field testing and suite 2	
11	14, 15 and 16 August 2019	Field testing and suite 1 and 4	
12	28 August 2019	Field testing and suite 1	2019 injection trial
13	24 and 25 September 2019	Field testing and suite 2, 3 and 4	
14	14 October 2019	Field testing and suite 2, 3 and 4	Idle period between
15	11 November 2019	Field testing and suite 1	2019 and 2020 injection trials
16	6 May 2020	Field testing and suite 2, 3 and 4	(2019-2020 irrigation season)
17	12 May 2020	Somatic coliphage testing only	
18	26 May 2020	Field testing and suite 1, 3 and 4	2020 injection trial
19	2 June 2020	Somatic coliphage testing only	
20	24 June 2020	Field testing and suite 1, 3 and 4	
Note:	24 June 2020	Field testing and suite 1, 3 and 4	

Suite 1: Plume tracking

Suite 2: Hydrogeochemistry and plume tracking

Suite 3: Emerging contaminants

Suite 4: Pathogens

ATTACHMENT 3

Water Quality Test Results and Reports

October 2019 (Suite 1 and 2).

Parameter	Unit	GPE066 (injection well)	GPE065	GPE067	GPE068	GPE069
Date and time sample taken	-	-	14-10-19	14-10-19	14-10-19	14-10-19
Anion Total	meq/L	-	4.9	7.5	9.4	14
Cation Total	meq/L	-	4.8	7.4	9.9	15
Sum of Anions + Cations by Calculation	meq/L	-	9.7	15	19	29
meq/L Difference by Calculation	meq/L	-	0.12	0.088	0.56	0.38
Total Alkalinity (as CaCO3)	g/m³	-	160	280	350	530
Bicarbonate Alkalinity (as HCO3)	g/m ³	-	190	350	430	640
Carbonate Alkalinity (as CO3)	g/m³	-	<2.00	<4.00	<4.00	<4.0
Hydroxide Alkalinity (as CaCO3)	g/m³	-	<2.00	<4.00	<4.00	<4.0
Bromide	g/m³	-	0.028	0.104	0.235	0.585
Chloride	g/m³	-	8.53	24.5	50.7	136
Fluoride	g/m³	-	-	-	-	-
Nitrate (as N)	g/m³	-	0.022	<0.00200	<0.00200	<0.004
Nitrite (as N)	g/m³	-	0.0051	<0.00200	<0.00200	<0.002
Sulphate	g/m³	-	77.5	56.9	42.8	0.47
Total Aluminium	g/m³	-	-	-	-	-
Total Arsenic	g/m³	-	0.00062	0.0061	0.004	0.013
Total Barium	g/m³	-	1.1	1.3	2.2	3.3
Total Boron	g/m³	-	0.084	0.14	0.15	0.2

Parameter	Unit	GPE066 (injection well)	GPE065	GPE067	GPE068	GPE069
Total Cadmium	g/m³	-	-	-	-	-
Total Calcium	g/m³	-	67	86	110	210
Total Chromium	g/m³	-	-	-	-	-
Total Cobalt	g/m³	-	-	-	-	-
Total Copper	g/m³	-	-	-	-	-
Total Iron	g/m³	-	0.05	2	3.2	5.1
Total Lead	g/m³	-	-	-	-	-
Total Magnesium	g/m³	-	6.5	9.9	13	24
Total Manganese	g/m³	-	0.012	0.49	0.46	1.2
Total Molybdenum	g/m³	-	-	-	-	-
Total Nickel	g/m³	-	0.00088	0.0016	0.0031	0.00078
Total Nitrogen (as N)	g/m³	-	0.057	1.6	1.1	3.1
Total Organic Carbon	g/m³	-	-	-	-	-
Total Oxidised Nitrogen (as N)	g/m³	-	-	-	-	-
Total Potassium	g/m³	-	3.1	6.1	6.8	8.2
Total Silicon (as Silica)	g/m³	-	11	33	34	32
Total Sodium	g/m³	-	22	54	60	77
Total Strontium	g/m³	-	-	-	-	-
Total Sulphur	g/m³	-	-	-	-	-
Total Vanadium	g/m³	-	-	-	-	-
Total Zinc	g/m³	-	0.0014	0.0059	0.0052	0.0038
Dissolved Aluminium	g/m³	-	-	-	-	-

Parameter	Unit	GPE066 (injection well)	GPE065	GPE067	GPE068	GPE069
Dissolved Ammoniacal Nitrogen (as N)	g/m³	-	0.02	1.6	1.1	2.8
Dissolved Arsenic	g/m³	-	0.00065	0.0063	0.0043	0.014
Dissolved Barium	g/m ³	-	-	-	-	-
Dissolved Boron	g/m ³	-	-	-	-	-
Dissolved Cadmium	g/m ³	-	-	-	-	-
Dissolved Calcium	g/m ³	-	65	83	120	180
Dissolved Chromium	g/m ³	-	-	-	-	-
Dissolved Cobalt	g/m ³	-	-	-	-	-
Dissolved Copper	g/m³	-	-	-	-	-
Dissolved Inorganic Nitrogen (as N)	g/m³	-	-	-	-	-
Dissolved Iron	g/m³	-	0.0095	1.7	3	5.2
Dissolved Lead	g/m³	-	-	-	-	-
Dissolved Magnesium	g/m³	-	5.8	9	12	20
Dissolved Manganese	g/m ³	-	0.0087	0.5	0.46	1.2
Dissolved Molybdenum	g/m ³	-	-	-	-	-
Dissolved Nickel	g/m³	-	-	-	-	-
Dissolved Potassium	g/m³	-	3	6.1	6.9	8.3
Dissolved Reactive Phosphorus (as P)	g/m³	-	-	-	-	-
Dissolved Sodium	g/m ³	-	23	51	62	77
Dissolved Strontium	g/m ³	-	-	-	-	-
Dissolved Sulphur	g/m³	-	-	-	-	-

Parameter	Unit	GPE066 (injection well)	GPE065	GPE067	GPE068	GPE069
Dissolved Vanadium	g/m³	-	-	-	-	-
Dissolved Zinc	g/m³	-	-	-	-	-

November 2019

Parameter	Unit	GPE066 (injection well)	GPE065	GPE067	GPE068	GPE069
Date and time sample taken	-	-	11-11-19	11-11-19	11-11-19	11-11-19
Anion Total	meq/L	-	5.1	8.5	10	16
Cation Total	meq/L	-	5.3	7.8	9.8	15
Sum of Anions + Cations by Calculation	meq/L	-	10	16	20	31
meq/L Difference by Calculation	meq/L	-	0.22	0.69	0.62	0.32
Total Alkalinity (as CaCO3)	g/m³	-	170	330	410	600
Bicarbonate Alkalinity (as HCO3)	g/m ³	-	170	400	500	740
Carbonate Alkalinity (as CO3)	g/m ³	-	16	<4.00	<4.00	<4.0
Hydroxide Alkalinity (as CaCO3)	g/m ³	-	<2.00	<4.00	<4.00	<4.0
Bromide	g/m³	-	0.027	0.114	0.214	0.582
Chloride	g/m³	-	8.2	27.4	49.2	129
Fluoride	g/m³	-	-	-	-	-
Nitrate (as N)	g/m³	-	<0.00200	<0.00200	<0.00400	<0.004
Nitrite (as N)	g/m ³	-	0.0022	<0.00200	0.0047	0.013

Parameter	Unit	GPE066 (injection well)	GPE065	GPE067	GPE068	GPE069
Sulphate	g/m³	-	76.3	51.8	41.6	0.28
Total Aluminium	g/m³	-	-	-	-	-
Total Arsenic	g/m ³	-	0.00087	0.0061	0.0016	0.014
Total Barium	g/m³	-	-	-	-	-
Total Boron	g/m³	-	-	-	-	-
Total Cadmium	g/m³	-	-	-	-	-
Total Calcium	g/m³	-	66	85	110	180
Total Chromium	g/m³	-	-	-	-	-
Total Cobalt	g/m³	-	-	-	-	-
Total Copper	g/m³	-	-	-	-	-
Total Iron	g/m³	-	0.34	1.8	1.4	5.4
Total Lead	g/m³	-	-	-	-	-
Total Magnesium	g/m³	-	6.5	10	12	27
Total Manganese	g/m³	-	0.065	0.46	0.47	1.3
Total Molybdenum	g/m³	-	-	-	-	-
Total Nickel	g/m³	-	-	-	-	-
Total Nitrogen (as N)	g/m³	-	0.12	1.9	1.2	3.1
Total Organic Carbon	g/m³	-	-	-	-	-
Total Oxidised Nitrogen (as N)	g/m³	-	-	-	-	-
Total Potassium	g/m³	-	2.9	6.4	6.8	8.8
Total Silicon (as Silica)	g/m³	-	-	-	-	-
Total Sodium	g/m³	-	22	53	57	77

Parameter	Unit	GPE066 (injection well)	GPE065	GPE067	GPE068	GPE069
Total Strontium	g/m³	-	-	-	-	-
Total Sulphur	g/m³	-	-	-	-	-
Total Vanadium	g/m³	-	-	-	-	-
Total Zinc	g/m³	-	-	-	-	-
Dissolved Aluminium	g/m³	-	-	-	-	-
Dissolved Ammoniacal Nitrogen (as N)	g/m³	-	0.012	1.5	1	2.6
Dissolved Arsenic	g/m³	-	0.00085	0.0059	0.0017	0.012
Dissolved Barium	g/m³	-	-	-	-	-
Dissolved Boron	g/m³	-	-	-	-	-
Dissolved Cadmium	g/m³	-	-	-	-	-
Dissolved Calcium	g/m³	-	73	86	120	190
Dissolved Chromium	g/m³	-	-	-	-	-
Dissolved Cobalt	g/m³	-	-	-	-	-
Dissolved Copper	g/m³	-	-	-	-	-
Dissolved Inorganic Nitrogen (as N)	g/m³	-	-	-	-	-
Dissolved Iron	g/m³	-	0.038	0.78	0.94	5.3
Dissolved Lead	g/m³	-	-	-	-	-
Dissolved Magnesium	g/m³	-	7.2	11	13	21
Dissolved Manganese	g/m³	-	0.099	0.48	0.49	1.2
Dissolved Molybdenum	g/m³	-	-	-	-	-
Dissolved Nickel	g/m³	-	-	-	-	-

Parameter	Unit	GPE066 (injection well)	GPE065	GPE067	GPE068	GPE069
Dissolved Potassium	g/m³	-	3	6.5	6.8	8.8
Dissolved Reactive Phosphorus (as P)	g/m³	-	-	-	-	-
Dissolved Sodium	g/m³	-	24	53	60	80
Dissolved Strontium	g/m³	-	-	-	-	-
Dissolved Sulphur	g/m³	-	-	-	-	-
Dissolved Vanadium	g/m³	-	-	-	-	-
Dissolved Zinc	g/m³	-	-	-	-	-

May 2020 (Suite 1 and 2)

Parameter	Unit	MAR Headworks (Waipaoa River water)	GPE065	GPE067	GPE068	GPE069
Date and time sample taken	-	26-05-20	26-05-20	26-05-20	26-05-20	26-05-20
Anion Total	meq/L	5	5.3	7.4	7.7	17
Cation Total	meq/L	4.9	5.1	7.1	8.3	16
Sum of Anions + Cations by Calculation	meq/L	10	10	14	16	33
meq/L Difference by Calculation	meq/L	0.097	0.17	0.26	0.57	0.83
Total Alkalinity (as CaCO3)	g/m³	140	150	280	290	490
Bicarbonate Alkalinity (as HCO3)	g/m³	180	190	340	360	600
Carbonate Alkalinity (as CO3)	g/m³	<1.00	<1.00	<2.00	<2.00	<4.00

Parameter	Unit	MAR Headworks (Waipaoa River water)	GPE065	GPE067	GPE068	GPE069
Hydroxide Alkalinity (as CaCO3)	g/m³	<1.00	<1.00	<2.00	<2.00	<4.00
Bromide	g/m ³	0.027	0.031	0.0731	0.0891	0.567
Chloride	g/m³	9.33	10.1	17.7	20.9	249
Fluoride	g/m ³	-	-	-	-	-
Nitrate (as N)	g/m ³	0.0656	0.1	<0.00200	0.0029	0.0025
Nitrite (as N)	g/m ³	<0.00200	<0.00200	<0.00200	<0.00200	0.002
Sulphate	g/m ³	90.9	93.5	63.4	61.1	0.47
Total Aluminium	g/m ³	-	-	-	-	-
Total Arsenic	g/m ³	0.00051	0.0005	0.0046	0.0036	0.013
Total Barium	g/m ³	-	-	-	-	-
Total Boron	g/m ³	-	-	-	-	-
Total Cadmium	g/m ³	-	-	-	-	-
Total Calcium	g/m ³	61	64	77	92	200
Total Chromium	g/m ³	-	-	-	-	-
Total Cobalt	g/m ³	-	-	-	-	-
Total Copper	g/m ³	-	-	-	-	-
Total Iron	g/m ³	0.11	0.024	1.7	2.6	5.6
Total Lead	g/m ³	-	-	-	-	-
Total Magnesium	g/m ³	6.7	6.7	9	11	23
Total Manganese	g/m ³	0.015	0.054	0.45	0.37	1.2
Total Molybdenum	g/m ³	-	-	-	-	-

Parameter	Unit	MAR Headworks (Waipaoa River water)	GPE065	GPE067	GPE068	GPE069
Total Nickel	g/m³	-	-	-	-	-
Total Nitrogen (as N)	g/m ³	0.2	0.22	1.8	1.2	3.5
Total Organic Carbon	g/m ³	-	-	-	-	-
Total Oxidised Nitrogen (as N)	g/m ³	-	-	-	-	-
Total Potassium	g/m³	2.5	2.6	5.7	6	8.6
Total Silicon (as Silica)	g/m ³	-	-	-	-	-
Total Sodium	g/m ³	25	25	48	52	83
Total Strontium	g/m ³	-	-	-	-	-
Total Sulphur	g/m³	-	-	-	-	-
Total Vanadium	g/m³	-	-	-	-	-
Total Zinc	g/m³	-	-	-	-	-
Dissolved Aluminium	g/m³	-	-	-	-	-
Dissolved Ammoniacal Nitrogen (as N)	g/m³	0.013	0.013	1.5	1.1	3
Dissolved Arsenic	g/m ³	0.00047	0.00047	0.0028	0.0011	0.0048
Dissolved Barium	g/m ³	-	-	-	-	-
Dissolved Boron	g/m ³	-	-	-	-	-
Dissolved Cadmium	g/m ³	<0.00005	<0.00005	<0.00005	<0.00005	<0.0005
Dissolved Calcium	g/m ³	63	67	79	94	200
Dissolved Chromium	g/m ³	-	-	-	-	-
Dissolved Cobalt	g/m³	-	-	-	-	-

Parameter	Unit	MAR Headworks (Waipaoa River water)	GPE065	GPE067	GPE068	GPE069
Dissolved Copper	g/m³	-	-	-	-	-
Dissolved Inorganic Nitrogen (as N)	g/m ³	-	-	-	-	-
Dissolved Iron	g/m³	<0.00200	0.0068	0.0059	0.057	0.58
Dissolved Lead	g/m³	-	-	-	-	-
Dissolved Magnesium	g/m³	6.8	6.9	8.8	11	24
Dissolved Manganese	g/m³	0.00083	0.055	0.44	0.37	1.2
Dissolved Molybdenum	g/m³	-	-	-	-	-
Dissolved Nickel	g/m³	-	-	-	-	-
Dissolved Potassium	g/m³	2.6	2.8	5.9	6.4	9.1
Dissolved Reactive Phosphorus (as P)	g/m³	-	-	-	-	-
Dissolved Sodium	g/m³	26	26	50	57	87
Dissolved Strontium	g/m³	-	-	-	-	-
Dissolved Sulphur	g/m³	-	-	-	-	-
Dissolved Vanadium	g/m³	-	-	-	-	-
Dissolved Zinc	g/m³	-	-	-	-	-

June 2020 (suite 1 and 2)

Parameter	Unit	MAR Headworks (Waipaoa River water)	GPE065	GPE067	GPE068	GPE069
Date and time sample taken	-	24-06-20	24-06-20	24-06-20	24-06-20	24-06-20
Anion Total	meq/L	-	5.3	7.3	8.4	15
Cation Total	meq/L	-	5.3	7.4	8.7	14
Sum of Anions + Cations by Calculation	meq/L	-	11	15	17	29
meq/L Difference by Calculation	meq/L	-	0.02	0.09	0.34	0.75
Total Alkalinity (as CaCO3)	g/m³	-	150	280	320	580
Bicarbonate Alkalinity (as HCO3)	g/m³	-	190	340	390	700
Carbonate Alkalinity (as CO3)	g/m³	-	<2.00	<4.00	<4.00	<4.00
Hydroxide Alkalinity (as CaCO3)	g/m³	-	<2.00	<4.00	<4.00	<4.00
Bromide	g/m³	-	0.029	0.0667	0.132	0.52
Chloride	g/m³	-	9.51	16.2	29.8	126
Fluoride	g/m³	-	-	-	-	-
Nitrate (as N)	g/m³	-	<0.00200	0.0021	0.002	0.0027
Nitrite (as N)	g/m³	-	<0.00200	0.0027	0.0035	0.0044
Sulphate	g/m³	-	94.5	62	55.3	0.61
Total Aluminium	g/m³	-	-	-	-	-
Total Arsenic	g/m³	-	0.00057	0.0043	0.0038	0.013
Total Barium	g/m³	-	-	-	-	-

Parameter	Unit	MAR Headworks (Waipaoa River water)	GPE065	GPE067	GPE068	GPE069
Total Boron	g/m³	-	-	-	-	-
Total Cadmium	g/m³	-	-	-	-	-
Total Calcium	g/m³	-	67	78	94	180
Total Chromium	g/m ³	-	-	-	-	-
Total Cobalt	g/m³	-	-	-	-	-
Total Copper	g/m ³	-	-	-	-	-
Total Iron	g/m³	-	0.023	1.1	2.7	5.8
Total Lead	g/m³	-	-	-	-	-
Total Magnesium	g/m³	-	7.3	9	11	21
Total Manganese	g/m³	-	0.026	0.45	0.4	1.2
Total Molybdenum	g/m³	-	-	-	-	-
Total Nickel	g/m³	-	-	-	-	-
Total Nitrogen (as N)	g/m³	-	0.088	1.6	1.1	3
Total Organic Carbon	g/m³	-	-	-	-	-
Total Oxidised Nitrogen (as N)	g/m³	-	-	-	-	-
Total Potassium	g/m³	-	2.7	5.9	6.4	9.2
Total Silicon (as Silica)	g/m³	-	-	-	-	-
Total Sodium	g/m³	-	27	52	56	76
Total Strontium	g/m³	-	-	-	-	-
Total Sulphur	g/m³	-	-	-	-	-
Total Vanadium	g/m³	-	-	-	-	-

Parameter	Unit	MAR Headworks (Waipaoa River water)	GPE065	GPE067	GPE068	GPE069
Total Zinc	g/m³	-	-	-	-	-
Dissolved Aluminium	g/m³	-	-	-	-	-
Dissolved Ammoniacal Nitrogen (as N)	g/m³	-	0.017	1.4	0.98	2.8
Dissolved Arsenic	g/m³	-	0.00059	0.0042	0.0037	0.013
Dissolved Barium	g/m³	-	-	-	-	-
Dissolved Boron	g/m³	-	-	-	-	-
Dissolved Cadmium	g/m³	-	<0.00005	<0.00005	<0.00005	<0.00005
Dissolved Calcium	g/m³	-	71	82	100	170
Dissolved Chromium	g/m³	-	-	-	-	-
Dissolved Cobalt	g/m³	-	-	-	-	-
Dissolved Copper	g/m³	-	-	-	-	-
Dissolved Inorganic Nitrogen (as N)	g/m³	-	-	-	-	-
Dissolved Iron	g/m³	-	0.012	0.98	2.7	5.8
Dissolved Lead	g/m³	-	-	-	-	-
Dissolved Magnesium	g/m³	-	6.7	8.5	10	19
Dissolved Manganese	g/m³	-	0.022	0.43	0.37	1.2
Dissolved Molybdenum	g/m³	-	-	-	-	-
Dissolved Nickel	g/m³	-	-	-	-	-
Dissolved Potassium	g/m³	-	2.5	5.6	6.1	8.1
Dissolved Reactive Phosphorus (as P)	g/m³	-	-	-	-	-

Parameter	Unit	MAR Headworks (Waipaoa River water)	GPE065	GPE067	GPE068	GPE069
Dissolved Sodium	g/m³	-	26	54	59	81
Dissolved Strontium	g/m³	-	-	-	-	-
Dissolved Sulphur	g/m³	-	-	-	-	-
Dissolved Vanadium	g/m³	-	-	-	-	-
Dissolved Zinc	g/m³	-	-	-	-	-

Watercare Laboratory Services

Watercare Services Limited

52 Aintree Ave, Auckland Airport, Auckland, 2150 PO Box 107028, Auckland, 2150 T: (09) 539 7600 F: (09) 539 7601 clientsupport@water.co.nz www.watercarelabs.co.nz

Certificate of Analysis Laboratory Reference:191015-136

Attention: Client: Address: Client Reference: Purchase Order:	Paul Murphy GISBORNE DISTRICT COUNCIL PO Box 747, Gisborne, 4040 Managed Aquifer Recharge 3700110012201		Final Report: Report Issue Date: Received Date: Sampled By: Quote Reference :	341450-0 14-Nov-2019 15-Oct-2019 Kathryn Sharman 5880	
Sample Details	s	WATERS	WATERS	WATERS	WATERS
Lab Sample ID:		191015-136-1	191015-136-2	191015-136-3	191015-136-4

Lab Sample ID.		191015-136-1	191015-136-2	191015-136-3	191015-136-4
Client Sample ID:		20193541	20193542	20193543	20193544
Sample Date/Time		14/10/2019 12:22	14/10/2019 11:30	14/10/2019 10:25	14/10/2019 09:36
Description:		599 Bushmere Rd- GPE069	598 Bushmere Rd- MAR pilot bore GPE 065	598 Bushmere Rd- MAR injection Bore 75 m GPE067	598 Bushmere Rd- MAR injection Bore 350m GPE068
Chemistry Detailed					
Anions					
Bromide	mg/L	0.585	0.028	0.104	0.235
Chloride	mg/L	136	8.53	24.5	50.7
Nitrate (as N)	mg/L	<0.004	0.022	<0.002	< 0.002
Nitrite (as N)	mg/L	<0.002	0.0051	<0.002	<0.002
Sulphate	mg/L	0.47	77.5	56.9	42.8
on Balance (Anions/Cations) by Calculatio	n				
Anion Total	meq/L	14 *	4.9 *	7.5 *	9.4 *
Cation Total	meq/L	15 *	4.8 *	7.4 *	9.9 *
meq/L Difference	meq/L	0.38 *	0.12 *	0.88e-1 *	0.56 *
Percent Difference	%	1.3 *	1.2 *	0.59 *	2.9 *
Sum of Anions + Cations	meq/L	29 *	9.7 *	15 *	19 *
General Testing					
Bicarbonate Alkalinity (as HCO3)	mg/L	640	190	350	430
Carbonate Alkalinity (as CO3)	mg/L	<4.0	<2.0	<4.0	<4.0
Dissolved Ammoniacal Nitrogen (as N)	mg/L	2.8	0.02	1.6	1.1
Hydroxide Alkalinity (as CaCO3)	mg/L	<4.0	<2.0	<4.0	<4.0
Total Alkalinity (as CaCO3)	mg/L	530	160	280	350
Total Nitrogen (as N)	mg/L	3.1	0.057	1.6	1.1
Turbidity (Infrared Light Source)	FNU	74.4 *	0.69 *	22.2 *	44.4 *
Turbidity	NTU	55	0.25	22	40
Metals					
Dissolved Metals by ICP-MS—Trace (Receiv	ved Filtered)				
Arsenic (Dissolved)	mg/L	0.014	0.00065	0.0063	0.0043
Calcium (Dissolved)	mg/L	180	65	83	120
Iron (Dissolved)	mg/L	5.2	0.0095	1.7	3.0
Magnesium (Dissolved)	mg/L	20	5.8	9.0	12
Manganese (Dissolved)	mg/L	1.2	0.0087	0.5	0.46
Potassium (Dissolved)	mg/L	8.3	3.0	6.1	6.9
Sodium (Dissolved)	mg/L	77	23	51	62
Total Metals by ICP-MS—Trace (Default Dig	jest)				
Arsenic (Total)	mg/L	0.013	0.00062	0.0061	0.004
Barium (Total)	mg/L	3.3	1.1	1.3	2.2
Boron (Total)	mg/L	0.2	0.084	0.14	0.15
Calcium (Total)	mg/L	210	67	86	110
Calcium Hardness (as CaCO3) (Total)	mg/L	450	160	220	280

Sample Details (continued)		WATERS	WATERS	WATERS	WATERS
Lab Sample ID:		191015-136-1	191015-136-2	191015-136-3	191015-136-4
Client Sample ID:		20193541	20193542	20193543	20193544
Sample Date/Time:		14/10/2019 12:22	14/10/2019 11:30	14/10/2019 10:25	14/10/2019 09:36
Description:		599 Bushmere Rd-	598 Bushmere Rd-	598 Bushmere Rd-	598 Bushmere Rd-
		GPE069	MAR pilot bore GPE 065	MAR injection Bore 75 m GPE067	MAR injection Bore 350m GPE068
Metals					
Total Metals by ICP-MS—Trace (Default Dig					
Iron (Total)	mg/L	5.1	0.05	2.0	3.2
Magnesium (Total)	mg/L	24	6.5	9.9	13
Magnesium Hardness (as CaCO3) (Total)	mg/L	85	27	41	52
Manganese (Total)	mg/L	1.2	0.012	0.49	0.46
Nickel (Total)	mg/L	0.00078	0.00088	0.0016	0.0031
Potassium (Total)	mg/L	8.2	3.1	6.1	6.8
Silicon (as Silica) (Total)	mg/L	32	11	33	34
Sodium (Total)	mg/L	77	22	54	60
Total Hardness (as CaCO3)	mg/L	530	180	260	340
Zinc (Total)	mg/L	0.0038	0.0014	0.0059	0.0052
Organics					
Adhoc investigation Acesulfame	ng/L	<0.5 *	<0.5 *	<0.5 *	<0.5 *
Acesularie Atenolol	ng/L	<0.5 *	<0.5 *	<0.5 *	<0.5 *
Benzophenone	ng/L	<0.5	<0.5	<0.5	<20 *
Bisphenol A	μg/L	<20 *	<20 *	<20 *	<20 *
Bupropion	ng/L	<0.5 *	<0.5 *	<0.5 *	<0.5 *
Caffeine	ng/L	25 *	149 *	19 *	<0.5 *
Carbamazepine	ng/L	<0.5 *	<0.5 *	<0.5 *	<0.5 *
Ciprofloxacin	ng/L	<20 *	<20 *	<20 *	<20 *
Comments		Analysed by LCMS and GCMS *	Analysed by LCMS and GCMS *	Analysed by LCMS and GCMS *	Analysed by LCMS and GCMS *
Cotinine	ng/L	8.3 *	6.8 *	9.4 *	<0.5 *
DEET	ng/L	<20 *	<20 *	<20 *	<20 *
Diclofenac	ng/L	<2 *	<2 *	<2 *	<2 *
Diltiazem	ng/L	<0.5 *	<0.5 *	<0.5 *	<0.5 *
Diphenhydramine	ng/L	<20 *	<20 *	<20 *	<20 *
Doxycycline	ng/L	<20 *	<20 *	<20 *	<20 *
Fluoxetine	ng/L	<0.5 *	<0.5 *	<0.5 *	<0.5 *
Gabapentin	ng/L	<0.5 *	<0.5 *	<0.5 *	<0.5 *
Galaxolide	µg/L	<0.1 *	<0.1 *	<0.1 *	<0.1 *
Gemfibrozil	ng/L	<0.5 *	< 0.5 *	<0.5 *	<0.5 *
lbuprofen	ng/L	<100 *	<100 *	<100 *	<100 *
Lamotrigine	ng/L	<0.5 *	< 0.5 *	<0.5 *	<0.5 *
Metoprolol	ng/L	<0.5 *	<0.5 *	<0.5 *	<0.5 *
Naproxen	ng/L ng/L	<20 * <1 *	<20 * <1 *	<20 *	<20 * <1 *
Norcotinine Paracetamol	ng/L	<1 ^ 3.4 *	<1 ^ 58 *	<1 * 1.7 *	<1 ^ <2 *
Paracetamol Sucralose	ng/L	3.4 * <0.5 *	58 * <0.5 *	<0.5 *	<0.5 *
Sucraiose Sulfamethoxazole	ng/L	<0.5 *	<0.5 *	<0.5 *	<0.5 *
Tonalid	μg/L	<0.5	<0.5	<0.5	<0.5
Triclocarban	ng/L	<15 *	<15 *	<15 *	<15 *
Triclosan	ng/L	<0.5 *	<0.5 *	<0.5 *	<0.5 *
Trimethoprim	ng/L	<0.5 *	1.5 *	<0.5 *	<0.5 *
Varenicline	ng/L	<0.5 *	<0.5 *	<0.5 *	<0.5 *
Venlafaxine	ng/L	<0.5 *	<0.5 *	<0.5 *	<0.5 *
Estrogen (As Received) by Liquid Chromat	ography-Mas				
17 alpha-ethynylestradiol	µg/L	<0.02	<0.02	<0.02	<0.02
beta-Estradiol	µg/L	<0.02	<0.02	<0.02	<0.02
Estriol	µg/L	<0.004	<0.004	<0.004	<0.004
Estrone	µg/L	<0.004	<0.004	<0.004	<0.004
Ethinylestradiol	µg/L	<0.04	<0.04	<0.04	<0.04
Total Estrogen	µg/L	<0.04	<0.04	<0.04	< 0.04

Sample Details (continued)		WATERS	WATERS	WATERS	WATERS
Lab Sample ID:		191015-136-1	191015-136-2	191015-136-3	191015-136-4
Client Sample ID:		20193541	20193542	20193543	20193544
Sample Date/Time:		14/10/2019 12:22	14/10/2019 11:30	14/10/2019 10:25	14/10/2019 09:36
Description:		599 Bushmere Rd-	598 Bushmere Rd-	598 Bushmere Rd-	598 Bushmere Rd-
,		GPE069	MAR pilot bore GPE 065	MAR injection Bore 75 m GPE067	MAR injection Bore 350m GPE068
Organics	I		005	III GF L007	53011 GF 2008
Glyphosate & AMPA by Liquid Chro	matography-Mass S	pectrometry			
AMPA	µg/L	<0.04	<0.04	<0.04	<0.04
Glyphosate	µg/L	<0.04	<0.04	<0.04	<0.04
Organonitrogen & Organophosphor	us Pesticides by Lic	guid Chromatography-M	ass Spectrometry		
Acetochlor	µg/L	<0.1	<0.1	<0.1	<0.1
Alachlor	µg/L	<0.1	<0.1	<0.1	<0.1
Atrazine desethyl	µg/L	<0.1	<0.1	<0.1	<0.1
Atrazine desisopropyl	µg/L	<0.1	<0.1	<0.1	<0.1
Atrazine	µg/L	<0.1	<0.1	<0.1	<0.1
Azaconazole	µg/L	<0.1	<0.1	<0.1	<0.1
Azinphos methyl	µg/L	<0.1	<0.1	<0.1	<0.1
Benalaxyl	µg/L	<0.1	<0.1	<0.1	<0.1
Bitertanol	µg/L	<0.1	<0.1	<0.1	<0.1
Bromacil	µg/L	<0.1	<0.1	<0.1	<0.1
Butachlor	µg/L	<0.1	<0.1	<0.1	<0.1
Carbaryl	µg/L	<0.1	<0.1	<0.1	<0.1
Carbofuran	μg/L μg/L	<0.1	<0.1	<0.1	<0.1
Chlorfluazuron Chlorpyrifos methyl	μg/L	<0.4 <0.4	<0.4 <0.4	<0.4 <0.4	<0.4 <0.4
Chlorpyrifos	μg/L	<0.4	<0.4	<0.4	<0.4
Chlortoluron	μg/L	<0.1	<0.1	<0.1	<0.1
Cyanazine	μg/L	<0.1	<0.1	<0.1	<0.1
Diazinon	μg/L	<0.1	<0.1	<0.1	<0.1
Dichlofluanid	µg/L	<40	<40	<40	<40
Dichlorvos	µg/L	<0.1	<0.1	<0.1	<0.1
Difenoconazole	µg/L	<0.1	<0.1	<0.1	<0.1
Dimethoate	µg/L	<0.1	<0.1	<0.1	<0.1
Diphenylamine	µg/L	<2.0	<2.0	<2.0	<2.0
Diuron	µg/L	<0.1	<0.1	<0.1	<0.1
Fenpropimorph	µg/L	<0.1	<0.1	<0.1	<0.1
Fluazifop butyl	µg/L	<0.1	<0.1	<0.1	<0.1
Fluometuron	µg/L	<0.1	<0.1	<0.1	<0.1
Flusilazole	µg/L	<0.1	<0.1	<0.1	<0.1
Fluvalinate tau	μg/L μg/L	<2.0	<2.0	<2.0	<2.0
Furalaxyl	μg/L	<0.1	<0.1	<0.1	<0.1
Haloxyfop methyl Hexaconazole	μg/L	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Hexazinone	μg/L	<0.1	<0.1	<0.1	<0.1
Imazapyr	μg/L	<0.1	<0.1	<0.1	<0.1
IPBC	μg/L	<0.1	<0.1	<0.1	<0.1
Kresoxim methyl	µg/L	<0.1	<0.1	<0.1	<0.1
Linuron	µg/L	<0.1	<0.1	<0.1	<0.1
Malathion	µg/L	<0.1	<0.1	<0.1	<0.1
Metalaxyl	µg/L	<0.1	<0.1	<0.1	<0.1
Metolachlor	µg/L	<0.1	<0.1	<0.1	<0.1
Metribuzin	µg/L	<0.1	<0.1	<0.1	<0.1
Metsulfuron	µg/L	<0.05	<0.05	<0.05	<0.05
Molinate	µg/L	<0.1	<0.1	<0.1	<0.1
Myclobutanil	µg/L	<0.1	<0.1	<0.1	<0.1
Naled	µg/L	<1.0	<1.0	<1.0	<1.0
Norflurazon	μg/L	<0.1	<0.1	<0.1	<0.1
Oryzalin	µg/L	<4.0	<4.0	<4.0	<4.0
Oxadiazon	µg/L	<0.1	<0.1	<0.1	<0.1
Paclobutrazol	µg/L	<0.1	<0.1	<0.1	<0.1
Parathion Ethyl	μg/L μg/L	<1.0	<1.0	<1.0	<1.0
Pendimethalin	µy/L	<0.1	<0.1	<0.1	<0.1

µg/L µg/L µg/L µg/L µg/L	191015-136-1 20193541 14/10/2019 12:22 599 Bushmere Rd- GPE069 guid Chromatography-M <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1	191015-136-3 20193543 14/10/2019 10:25 598 Bushmere Rd- MAR injection Bore 75 m GPE067 <0.1	191015-136-4 20193544 14/10/2019 09:36 598 Bushmere Rd- MAR injection Bore 350m GPE068
µg/L µg/L µg/L µg/L µg/L	14/10/2019 12:22 599 Bushmere Rd- GPE069 guid Chromatography-M <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	14/10/2019 11:30 598 Bushmere Rd- MAR pilot bore GPE 065 ass Spectrometry <0.1 <0.1	14/10/2019 10:25 598 Bushmere Rd- MAR injection Bore 75 m GPE067 <0.1	14/10/2019 09:36 598 Bushmere Rd- MAR injection Bore 350m GPE068
µg/L µg/L µg/L µg/L µg/L	599 Bushmere Rd- GPE069 guid Chromatography-M <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	598 Bushmere Rd- MAR pilot bore GPE 065 ass Spectrometry <0.1 <0.1	14/10/2019 10:25 598 Bushmere Rd- MAR injection Bore 75 m GPE067 <0.1	598 Bushmere Rd- MAR injection Bore 350m GPE068
µg/L µg/L µg/L µg/L µg/L	GPE069 quid Chromatography-M <0.1 <0.1 <0.1 <0.1 <0.1	MAR pilot bore GPE 065 ass Spectrometry <0.1 <0.1	MAR injection Bore 75 m GPE067 <0.1	MAR injection Bore 350m GPE068
µg/L µg/L µg/L µg/L µg/L	<mark>quid Chromatography-M.</mark> <0.1 <0.1 <0.1 <0.1 <0.1	065 ass Spectrometry <0.1 <0.1	m GPE067 <0.1	350m GPE068
µg/L µg/L µg/L µg/L µg/L	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1		<0.1
µg/L µg/L µg/L µg/L µg/L	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1		<0.1
µg/L µg/L µg/L µg/L µg/L	<0.1 <0.1 <0.1	<0.1		<0.1
μg/L μg/L μg/L μg/L	<0.1 <0.1		-0.1	~
μg/L μg/L μg/L	<0.1	-0.4	SU. 1	<0.1
μg/L μg/L		<0.1	<0.1	<0.1
µg/L	-0.1	<0.1	<0.1	<0.1
	<0.1	<0.1	<0.1	<0.1
,	<0.1	<0.1	<0.1	<0.1
µg/L	<0.1	<0.1	<0.1	<0.1
µg/L	<0.1	<0.1	<0.1	<0.1
μg/L	<0.1	<0.1	<0.1	<0.1
	<0.1	<0.1	<0.1	<0.1
				<0.1
µg/L			<0.1	<0.1
			<2.0	<2.0
				<0.1
				<0.1
			<0.1	<0.1
				<1.0
				<0.1
			<0.1	<0.1
				<0.1
				<0.1
				<0.1
				<0.1
				<40
µg/L	<0.1	<0.1	<0.1	<0.1
MPN/100 L	<5.0	<5.0	<5.0	<5.0
cfu/100 mL	<1.6	<1.6	<1.6	<1.6
cfu/100 mL	<1.6	<1.6	<1.6	<1.6
÷				
cfu/100 mL	<1.6	<1.6	<1.6	<1.6
	0000018106.pdf *	0000018107.pdf *	0000018108.pdf *	0000018109.pdf *
	WATERS			
	191015-136-6			
	20193546			
	14/10/2019 12:28			
	Waipaoa River at			
	Infiltration Chamber			
-	390			
		, , , , .		
	Hug/L Hug/L	µg/L <0.1	μgL c0.1 c0.1 μgL <0.1	High <0.1 <0.1 <0.1 High <0.1

Reference Methods The sample(s) referred to in this report were	e analysed by the following method(s)			
Analyte	Method Reference	MDL	Samples L	Location

Chemistry Detailed				
Anions				
Bromide	APHA (online edition) 4110 B	0.005 mg/L	1, 2, 3, 4	Auckland
Chloride	APHA (online edition) 4110 B	0.02 mg/L	1, 2, 3, 4	Auckland
Nitrate (as N)	APHA (online edition) 4110 B	0.002 mg/L	1, 2, 3, 4	Auckland
Nitrite (as N)	APHA (online edition) 4110 B	0.002 mg/L	1, 2, 3, 4	Auckland
Sulphate	APHA (online edition) 4110 B	0.02 mg/L	1, 2, 3, 4	Auckland
•		0.02 mg/L	.,_, _, .	
Ion Balance (Anions/Cations) by Calculation Anion Total			1, 2, 3, 4	Auckland
Cation Total	APHA (online edition) 1030 E	meq/L		Auckland
	APHA (online edition) 1030 E	meq/L	1, 2, 3, 4	
meq/L Difference	APHA (online edition) 1030 E	meq/L	1, 2, 3, 4	Auckland
Percent Difference	APHA (online edition) 1030 E		1, 2, 3, 4	Auckland
Sum of Anions + Cations	APHA (online edition) 1030 E		1, 2, 3, 4	Auckland
General Testing				
Bicarbonate Alkalinity (as HCO3) by Titration	APHA (online edition) 2320 B	1 mg/L	1, 2, 3, 4	Auckland
Carbonate Alkalinity (as CO3) by Titration	APHA (online edition) 2320 B	1 mg/L	1, 2, 3, 4	Auckland
Dissolved Ammoniacal Nitrogen (as N) by Colorimetry/	HMSO (1981) ISBN 0117516139	0.005 mg/L	1, 2, 3, 4	Auckland
Discrete Analyser		-		
Hydroxide Alkalinity (as CaCO3) by Titration	APHA (online edition) 2320 B	1 mg/L	1, 2, 3, 4	Auckland
Total Alkalinity (as CaCO3) by Titration	APHA (online edition) 2320 B	1 mg/L	1, 2, 3, 4	Auckland
Total Nitrogen (as N) by Persulphate Digestion and Flow	APHA (online edition) 4500-P J (modified),	0.010 mg/L	1, 2, 3, 4	Auckland
Analysis	4500-NO3 I	0.0	0	ا - مارام را
Total Suspended Solids by Gravimetry	APHA (online edition) 2540 D / 2540 E	0.2 mg/L	6	Auckland
Turbidity (Infrared Light Source) by Nephelometry	ISO 7027-1:2016	0.05 FNU	All	Auckland
Turbidity by Nephelometry	APHA (online edition) 2130 B (modified)	0.05 NTU	All	Auckland
Metals				
Dissolved Metals by ICP-MS—Trace (Received Filtered	I)			
Arsenic (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.00010 mg/L	1, 2, 3, 4	Auckland
Calcium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.010 mg/L	1, 2, 3, 4	Auckland
Iron (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.002 mg/L	1, 2, 3, 4	Auckland
Magnesium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.001 mg/L	1, 2, 3, 4	Auckland
Manganese (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.0005 mg/L	1, 2, 3, 4	Auckland
Potassium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.02 mg/L	1, 2, 3, 4	Auckland
Sodium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.1 mg/L	1, 2, 3, 4	Auckland
Total Metals by ICP-MS—Trace (Default Digest)	(5		
Arsenic (Total)	APHA (online edition) 3125 B by ICPMS	0.00010 mg/L	1, 2, 3, 4	Auckland
Barium (Total)	APHA (online edition) 3125 B by ICPMS	0.0002 mg/L	1, 2, 3, 4	Auckland
Boron (Total)	APHA (online edition) 3125 B by ICPMS	0.005 mg/L	1, 2, 3, 4	Auckland
Calcium (Total)	APHA (online edition) 3125 B by ICPMS	0.010 mg/L	1, 2, 3, 4	Auckland
Calcium Hardness (as CaCO3) (Total)	APHA (online edition) 3125 B by ICPMS	0.03 mg/L	1, 2, 3, 4	Auckland
Iron (Total)	APHA (online edition) 3125 B by ICPMS	0.002 mg/L	1, 2, 3, 4	Auckland
Magnesium (Total)	APHA (online edition) 3125 B by ICPMS	0.001 mg/L	1, 2, 3, 4	Auckland
Magnesium Hardness (as CaCO3) (Total)	APHA (online edition) 3125 B by ICPMS	0.004 mg/L	1, 2, 3, 4	Auckland
Manganese (Total)	APHA (online edition) 3125 B by ICPMS	0.0005 mg/L	1, 2, 3, 4	Auckland
Nickel (Total)	APHA (online edition) 3125 B by ICPMS	0.00010 mg/L	1, 2, 3, 4	Auckland
Potassium (Total)	APHA (online edition) 3125 B by ICPMS	0.05 mg/L	1, 2, 3, 4	Auckland
Silicon (as Silica) (Total)	APHA (online edition) 3125 B by ICPMS	0.1 mg/L	1, 2, 3, 4	Auckland
Sodium (Total)	APHA (online edition) 3125 B by ICPMS	0.1 mg/L	1, 2, 3, 4	Auckland
Total Hardness (as CaCO3)	APHA (online edition) 3125 B by ICPMS	0.03 mg/L	1, 2, 3, 4	Auckland
Zinc (Total)	APHA (online edition) 3125 B by ICPMS	0.001 mg/L	1, 2, 3, 4	Auckland
Organics Adhee investigation				
Adhoc investigation Comments			1, 2, 3, 4	Auckland
	In House		1, 2, 3, 4	AUCRIDIIU
Estrogen (As Received) by Liquid Chromatography-Ma	· ·			A 11
17 alpha-ethynylestradiol	SPE cleanup, LC MS/MS	0.02 µg/L	1, 2, 3, 4	Auckland
beta-Estradiol	SPE cleanup, LC MS/MS	0.02 µg/L	1, 2, 3, 4	Auckland
Estriol	SPE cleanup, LC MS/MS	0.004 µg/L	1, 2, 3, 4	Auckland
Estrone	SPE cleanup, LC MS/MS	0.004 µg/L	1, 2, 3, 4	Auckland
			4 0 0 4	Augkland
Ethinylestradiol	SPE cleanup, LC MS/MS	0.04 µg/L	1, 2, 3, 4	Auckland

Organics							
Glyphosate & AMPA by Liquid Chromatography-Mass Sp	ectrometry						
AMPA	In-house by LC-MS	0.04 µg/L	1, 2, 3, 4	Auckland			
Glyphosate	In-house by LC-MS	0.04 µg/L	1, 2, 3, 4	Auckland			
Organonitrogen & Organophosphorus Pesticides by Liquid Chromatography-Mass Spectrometry							
Acetochlor	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Alachlor	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Atrazine desethyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Atrazine desisopropyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Atrazine	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Azaconazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Azinphos methyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Benalaxyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Bitertanol Bromacil	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland Auckland			
Butachlor	In-house by LC-MS In-house by LC-MS	0.1 μg/L	1, 2, 3, 4 1, 2, 3, 4	Auckland			
Carbaryl	In-house by LC-MS	0.1 μg/L 0.1 μg/L	1, 2, 3, 4	Auckland			
Carbofyran	In-house by LC-MS	0.1 μg/L	1, 2, 3, 4	Auckland			
Chlorfluazuron	In-house by LC-MS	0.4 μg/L	1, 2, 3, 4	Auckland			
Chlorpyrifos methyl	In-house by LC-MS	0.4 μg/L	1, 2, 3, 4	Auckland			
Chlorpyrifos	In-house by LC-MS	0.1 μg/L	1, 2, 3, 4	Auckland			
Chlortoluron	In-house by LC-MS	0.1 μg/L	1, 2, 3, 4	Auckland			
Cyanazine	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Diazinon	In-house by LC-MS	0.1 μg/L	1, 2, 3, 4	Auckland			
Dichlofluanid	In-house by LC-MS	40 µg/L	1, 2, 3, 4	Auckland			
Dichlorvos	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Difenoconazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Dimethoate	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Diphenylamine	In-house by LC-MS	2 µg/L	1, 2, 3, 4	Auckland			
Diuron	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Fenpropimorph	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Fluazifop butyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Fluometuron	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Flusilazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Fluvalinate tau	In-house by LC-MS	2 µg/L	1, 2, 3, 4	Auckland			
Furalaxyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Haloxyfop methyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Hexaconazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Hexazinone	In-house by LC-MS	0.1 μg/L	1, 2, 3, 4	Auckland			
Imazapyr IPBC	In-house by LC-MS In-house by LC-MS	0.1 μg/L	1, 2, 3, 4 1, 2, 3, 4	Auckland Auckland			
Kresoxim methyl	In-house by LC-MS	0.1 μg/L 0.1 μg/L	1, 2, 3, 4	Auckland			
Linuron	In-house by LC-MS	0.1 μg/L	1, 2, 3, 4	Auckland			
Malathion	In-house by LC-MS	0.1 μg/L	1, 2, 3, 4	Auckland			
Metalaxyl	In-house by LC-MS	0.1 μg/L	1, 2, 3, 4	Auckland			
Metolachlor	In-house by LC-MS	0.1 μg/L	1, 2, 3, 4	Auckland			
Metribuzin	In-house by LC-MS	0.1 μg/L	1, 2, 3, 4	Auckland			
Metsulfuron	In-house by LC-MS	0.05 μg/L	1, 2, 3, 4	Auckland			
Molinate	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Myclobutanil	In-house by LC-MS	0.1 μg/L	1, 2, 3, 4	Auckland			
Naled	In-house by LC-MS	1 µg/L	1, 2, 3, 4	Auckland			
Norflurazon	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Oryzalin	In-house by LC-MS	4 µg/L	1, 2, 3, 4	Auckland			
Oxadiazon	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Paclobutrazol	In-house by LC-MS	0.1 μg/L	1, 2, 3, 4	Auckland			
Parathion Ethyl	In-house by LC-MS	1 µg/L	1, 2, 3, 4	Auckland			
Pendimethalin	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Pirimicarb	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Pirimiphos methyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Prochloraz	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			
Prometryne	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland			

Organics				
Organonitrogen & Organophosphorus Pesticides by	y Liquid Chromatography-Mass Spectrometry			
Propachlor	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Propanil	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Propazine	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Propiconazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Pyriproxifen	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Quizalofop ethyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Simazine	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Simetryn	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Sulfentrazone	In-house by LC-MS	2 µg/L	1, 2, 3, 4	Auckland
ГСМТВ	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Tebuconazol	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Terbacil	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Terbufos	In-house by LC-MS	1 µg/L	1, 2, 3, 4	Auckland
Terbumeton	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Terbuthylazine desethyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Terbuthylazine	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Ferbutryn	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Thiabendazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Thiobencarb	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Tolylfluanide	In-house by LC-MS	40 µg/L	1, 2, 3, 4	Auckland
Triazophos	In-house by LC-MS	0.1 µg/L	1, 2, 3, 4	Auckland
Microbiology				
Culturable Adenoviruses by MPN				
Adenovirus (presumptive)	In-house based on APHA 9510 & Manual of Environmental Biology	5 MPN/100 L	1, 2, 3, 4	Auckland
Enterococci by Membrane Filtration				
Enterococci	APHA (online edition) 9230 C	2 cfu/100 mL	1, 2, 3, 4	Auckland
Escherichia coli by Membrane Filtration				
Escherichia coli	USEPA Method 1603	2 cfu/100 mL	1, 2, 3, 4	Auckland
Faecal coliforms by Membrane Filtration				
Faecal coliforms	APHA (online edition) 9222 D	2 cfu/100 mL	1, 2, 3, 4	Auckland
Subcontracting			100	
COA	As per Subcontractor Method		1, 2, 3, 4	Auckland
Preparations				
Digest for Total Metals in Liquids	In House (4:1 Nitric:Hydrochloric Acid, 95°C 2 hours)		1, 2, 3, 4	Auckland
Membrane Filtration (0.45 μm)	APHA (online edition) 4500-P B (preliminary filtration)		1, 2, 3, 4	Auckland
Nonpotable waters preparation (virus)	In-house method (based on different sources)		1, 2, 3, 4	Auckland

For more information please contact the Operations Manager.

Appendix 1 - Result Images

Lab Sample ID 191015-136-4

Client Sample ID 5084709

Sampling Point

598 Bushmere Rd- MAR injection Bore 350m GPE068

Dioxins

Lab Sample ID 191015-136-3 5084708

Client Sample ID Sampling Point

598 Bushmere Rd- MAR injection Bore 75m GPE067

Dioxins

Lab Sample ID 191015-136-2

Client Sample ID 5084707

Sampling Point

598 Bushmere Rd- MAR pilot bore GPE 065

Dioxins

 Lab Sample ID
 191015-136-1

 Client Sample ID
 5084706

 Sampling Point
 599 Bushmere Rd- GPE069

Dioxins

Samples, with suitable preservation and stability of analytes, will be held by the laboratory for a period of two weeks after results have been reported, unless otherwise advised by the submitter.

Watercare Laboratory Services is a division of Watercare Services Limited .

This report may not be reproduced, except in full, without the written authority of the Operations Manager.

Homfare

Peter Boniface KTP Signatory

Watercare Laboratory Services

T: (09) 539 7600

F: (09) 539 7601

Queenstown

74 Glenda Drive,

PO Box 2614

Queenstown,

Wakatipu

Auckland

52 Aintree Ave,

PO Box 107028,

Auckland Airport

Auckland, 2150

T: (03) 214 4040

Invercargill

142 Esk Street

Invercargill, 9840

PO Box 747

T: (03) 409 0559

Watercare Laboratory Services

Watercare Services Limited

52 Aintree Ave, Auckland Airport, Auckland, 2150 PO Box 107028, Auckland, 2150 T: (09) 539 7600 F: (09) 539 7601 clientsupport@water.co.nz www.watercarelabs.co.nz

Certificate of Analysis Laboratory Reference:191112-090

Attention: Client: Address: Client Reference: Purchase Order:	Paul Murphy GISBORNE DISTRICT COUNCIL PO Box 747, Gisborne, 4040 Managed Aquifer Recharge 3700110012201		Final Report: Report Issue Date: Received Date: Sampled By: Quote Reference :	343037-0 26-Nov-2019 12-Nov-2019 Kathryn Sharman 5880	
Sample Details	;	WATERS	WATERS	WATERS	WATERS

Sample Details		WATERS	WATERS	WATERS	WATERS
Lab Sample ID:		191112-090-1	191112-090-2	191112-090-3	191112-090-6
Client Sample ID:		20193899	20193900	20193901	20193898
Sample Date/Time		11/11/2019 10:32	11/11/2019 10:04	11/11/2019 09:36	11/11/2019 11:00
Description:		598 Bushmere Road	598 Bushmere Road	598 Bushmere Road	599 Bushmere Road
···· /···		MAR Pilot Bore GPE	MAR injection bore 75	MAR injection bore	GPE069
		065	m GPE067	350m GPE068	
Chemistry Detailed					
Anions					
Bromide	mg/L	0.027	0.114	0.214	0.582
Chloride	mg/L	8.2	27.4	49.2	129
Nitrate (as N)	mg/L	0.0022	<0.002	0.0047	0.013
Nitrite (as N)	mg/L	<0.002	< 0.002	<0.004	<0.004
Sulphate	mg/L	76.3	51.8	41.6	0.28
Ion Balance (Anions/Cations) by Calculation	on				
Anion Total	meq/L	5.1 *	8.5 *	10 *	16 *
Cation Total	meq/L	5.3 *	7.8 *	9.8 *	15 *
meq/L Difference	meq/L	0.22 *	0.69 *	0.62 *	0.32 *
Percent Difference	%	2.1 *	4.3 *	3.1 *	1.0 *
Sum of Anions + Cations	meq/L	10 *	16 *	20 *	31 *
General Testing					
Bicarbonate Alkalinity (as HCO3)	mg/L	170	400	500	740
Carbonate Alkalinity (as CO3)	mg/L	16	<4.0	<4.0	<4.0
Dissolved Ammoniacal Nitrogen (as	mg/L	0.012	1.5	1.0	2.6
N)					
Hydroxide Alkalinity (as CaCO3)	mg/L	<2.0	<4.0	<4.0	<4.0
Total Alkalinity (as CaCO3)	mg/L	170	330	410	600
Total Nitrogen (as N)	mg/L	0.12	1.9	1.2	3.1
Turbidity (Infrared Light Source)	FNU	11.6 *	26.0 *	4.64 *	52.4 *
Turbidity	NTU	8.6	24	4.3	50
Metals					
Dissolved Metals by ICP-MS—Trace (Rece	ived Filtered				
Arsenic (Dissolved)	mg/L	0.00085	0.0059	0.0017	0.012
Calcium (Dissolved)	mg/L	73	86	120	190
Iron (Dissolved)	mg/L	0.038	0.78	0.94	5.3
Magnesium (Dissolved)	mg/L	7.2	11	13	21
Manganese (Dissolved)	mg/L	0.099	0.48	0.49	1.2
Potassium (Dissolved)	mg/L	3.0	6.5	6.8	8.8
Sodium (Dissolved)	mg/L	24	53	60	80
Total Metals by ICP-MS—Trace (Default Die	gest)				
Arsenic (Total)	mg/L	0.00087	0.0061	0.0016	0.014
Calcium (Total)	mg/L	66	85	110	180
Iron (Total)	mg/L	0.34	1.8	1.4	5.4
Magnesium (Total)	mg/L	6.5	10	12	27
Manganese (Total)	mg/L	0.065	0.46	0.47	1.3
Potassium (Total)	mg/L	2.9	6.4	6.8	8.8

Lab Sample ID: Client Sample ID: Sample Date/Time:	WATERS	WATERS	WATERS	١	WATERS
,	191112-090-1	191112-090-2	191112-090-3	19	1112-090-6
Sample Date/Time:	20193899	20193900	20193901	2	0193898
	11/11/2019 10:32 11/11/2019 10:04 11/11/2019 09:		36 11/1 ⁻	1/2019 11:00	
Description:	598 Bushmere Road	598 Bushmere Road	598 Bushmere R	oad 599 Bu	Ishmere Road
	MAR Pilot Bore GPE 065	MAR injection bore 75 m GPE067	5 MAR injection bore GPE 350m GPE068		GPE069
Metals					
Total Metals by ICP-MS—Trace (Default Digest) Sodium (Total) mg/L	22	53	F7		77
	22 th * are not accredited to Int		57 w Zealand		11
Where samples have been supplie				ned.	
Reference Methods The sample(s) referred to in this report were analysed by the	ne following method(s)				
Analyte	Method Reference		MDL	Samples	Location
Chemistry Detailed					
Anions					
Bromide	APHA (online edition) 41	10 B	0.005 mg/L	All	Auckland
Chloride	APHA (online edition) 41	10 B	0.02 mg/L	All	Auckland
Nitrate (as N)	APHA (online edition) 41	10 B	0.002 mg/L	All	Auckland
Nitrite (as N)	APHA (online edition) 41	10 B	0.002 mg/L	All	Auckland
Sulphate	APHA (online edition) 41	10 B	0.02 mg/L	All	Auckland
Ion Balance (Anions/Cations) by Calculation					
Anion Total	APHA (online edition) 10	30 E	meq/L	All	Auckland
Cation Total	APHA (online edition) 10	30 E	meq/L	All	Auckland
meq/L Difference	APHA (online edition) 1030 E		meq/L	All	Auckland
Percent Difference	APHA (online edition) 10	30 E		All	Auckland
Sum of Anions + Cations	APHA (online edition) 10	30 E		All	Auckland
General Testing					
Bicarbonate Alkalinity (as HCO3) by Titration	APHA (online edition) 23	20 B	1 mg/L	All	Auckland
Carbonate Alkalinity (as CO3) by Titration	APHA (online edition) 23	20 B	1 mg/L	All	Auckland
Dissolved Ammoniacal Nitrogen (as N) by Colorimetry/ Discrete Analyser	HMSO (1981) ISBN 0117	7516139	0.005 mg/L	All	Auckland
Hydroxide Alkalinity (as CaCO3) by Titration	APHA (online edition) 23	20 B	1 mg/L	All	Auckland
Total Alkalinity (as CaCO3) by Titration	APHA (online edition) 23	20 B	1 mg/L	All	Auckland
Total Nitrogen (as N) by Persulphate Digestion and Flow Analysis	APHA (online edition) 45 4500-NO3 I	00-P J (modified),	0.010 mg/L	All	Auckland
Turbidity (Infrared Light Source) by Nephelometry	ISO 7027-1:2016		0.05 FNU	All	Auckland
	APHA (online edition) 21	30 B (modified)	0.05 NTU	All	Auckland
Turbidity by Nephelometry					
Metals					
	APHA (online edition) 31	25 B by ICPMS	0.00010 mg/L	All	Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered)	APHA (online edition) 31 APHA (online edition) 31		0.00010 mg/L 0.010 mg/L	All	Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved)		25 B by ICPMS	6		
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved)	APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS	0.010 mg/L	All	Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Iron (Dissolved)	APHA (online edition) 31 APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS 25 B by ICPMS	0.010 mg/L 0.002 mg/L	All All	Auckland Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Iron (Dissolved) Magnesium (Dissolved)	APHA (online edition) 31 APHA (online edition) 31 APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS 25 B by ICPMS 25 B by ICPMS 25 B by ICPMS	0.010 mg/L 0.002 mg/L 0.001 mg/L	All All All	Auckland Auckland Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Iron (Dissolved) Magnesium (Dissolved) Manganese (Dissolved)	APHA (online edition) 31 APHA (online edition) 31 APHA (online edition) 31 APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS 25 B by ICPMS 25 B by ICPMS 25 B by ICPMS	0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L	Ali Ali Ali Ali	Auckland Auckland Auckland Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Iron (Dissolved) Magnesium (Dissolved) Manganese (Dissolved) Potassium (Dissolved) Sodium (Dissolved)	APHA (online edition) 31 APHA (online edition) 31 APHA (online edition) 31 APHA (online edition) 31 APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS 25 B by ICPMS 25 B by ICPMS 25 B by ICPMS	0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.02 mg/L	Aii Aii Aii Aii Aii	Auckland Auckland Auckland Auckland Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Iron (Dissolved) Magnesium (Dissolved) Maganese (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Total Metals by ICP-MS—Trace (Default Digest)	APHA (online edition) 31 APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS	0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.02 mg/L 0.1 mg/L	Aii Aii Aii Aii Aii	Auckland Auckland Auckland Auckland Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Iron (Dissolved) Magnesium (Dissolved) Manganese (Dissolved) Potassium (Dissolved) Sodium (Dissolved)	APHA (online edition) 31 APHA (online edition) 31 APHA (online edition) 31 APHA (online edition) 31 APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS	0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.02 mg/L	AII AII AII AII AII AII	Auckland Auckland Auckland Auckland Auckland Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Iron (Dissolved) Magnesium (Dissolved) Maganese (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Arsenic (Total)	APHA (online edition) 31 APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS	0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.02 mg/L 0.1 mg/L 0.00010 mg/L	AII AII AII AII AII AII	Auckland Auckland Auckland Auckland Auckland Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Iron (Dissolved) Magnesium (Dissolved) Maganese (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Arsenic (Total) Calcium (Total)	APHA (online edition) 31 APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS	0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.02 mg/L 0.1 mg/L 0.00010 mg/L 0.00010 mg/L	AII AII AII AII AII AII AII AII	Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Iron (Dissolved) Magnesium (Dissolved) Maganese (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Arsenic (Total) Calcium (Total) Iron (Total)	APHA (online edition) 31 APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS	0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.02 mg/L 0.1 mg/L 0.00010 mg/L 0.010 mg/L 0.002 mg/L	AII AII AII AII AII AII AII AII	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Iron (Dissolved) Magnesium (Dissolved) Maganese (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Total Metals by ICP-MS—Trace (Default Digest) Arsenic (Total) Calcium (Total) Iron (Total) Magnesium (Total)	APHA (online edition) 31 APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS	0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.02 mg/L 0.1 mg/L 0.00010 mg/L 0.002 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L	AII AII AII AII AII AII AII AII AII	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Iron (Dissolved) Magnesium (Dissolved) Maganese (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Arsenic (Total) Calcium (Total) Iron (Total) Magnesium (Total) Manganese (Total)	APHA (online edition) 31 APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS	0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.02 mg/L 0.1 mg/L 0.00010 mg/L 0.00010 mg/L 0.002 mg/L 0.001 mg/L	AII AII AII AII AII AII AII AII AII AII	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Iron (Dissolved) Magnesium (Dissolved) Maganese (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Total Metals by ICP-MS—Trace (Default Digest) Arsenic (Total) Calcium (Total) Iron (Total) Maganese (Total) Potassium (Total) Sodium (Total) Maganese (Total) Sodium (Total) Arsenic (Total) Calcium (Total) Maganese (Total) Sodium (Total) Sodium (Total) Sodium (Total) Sodium (Total) Sodium (Total)	APHA (online edition) 31 APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS	0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.02 mg/L 0.1 mg/L 0.00010 mg/L 0.00010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.05 mg/L	AII AII AII AII AII AII AII AII AII AII	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Iron (Dissolved) Magnesium (Dissolved) Maganese (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Total Metals by ICP-MS—Trace (Default Digest) Arsenic (Total) Calcium (Total) Iron (Total) Magnesium (Total) Potassium (Total) Potassium (Total)	APHA (online edition) 31 APHA (online edition) 31	25 B by ICPMS 25 B by ICPMS	0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.02 mg/L 0.1 mg/L 0.00010 mg/L 0.00010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.05 mg/L	AII AII AII AII AII AII AII AII AII AII	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland

Preparations			
Membrane Filtration (0.45 µm)	APHA (online edition) 4500-P B (preliminary	All	Auckland
	filtration)		
The method detection limit (MDL) listed	is the limit attainable in a relatively clean matrix. If dilutions are required for analysis the	e detection limit may b	e higher.
	For more information please contact the Operations Manager.		

Samples, with suitable preservation and stability of analytes, will be held by the laboratory for a period of two weeks after results have been reported, unless otherwise advised by the submitter.

Watercare Laboratory Services is a division of Watercare Services Limited .

This report may not be reproduced, except in full, without the written authority of the Operations Manager.

me

Anel Du Preez KTP Signatory

Watercare Laboratory Services

T: (09) 539 7600

F: (09) 539 7601

Queenstown

74 Glenda Drive,

PO Box 2614

Queenstown,

Wakatipu

Auckland

52 Aintree Ave,

PO Box 107028,

Auckland Airport

Auckland, 2150

F: (03) 214 4041 Page 3 of 3

T: (03) 214 4040

Invercargill

142 Esk Street

Invercargill, 9840

PO Box 747

T: (03) 409 0559

Watercare Laboratory Services

Watercare Services Limited

52 Aintree Ave, Auckland Airport, Auckland, 2150 PO Box 107028, Auckland, 2150 T: (09) 539 7600 F: (09) 539 7601 clientsupport@water.co.nz www.watercarelabs.co.nz

Certificate of Analysis Laboratory Reference:200506-138

Final Report: 365385-0 Replaces Report 364578-0 Attention Paul Murphy Client: **GISBORNE DISTRICT COUNCIL** Report Issue Date: 16-Jul-2020 Address: PO Box 747, Gisborne, 4040 Received Date: 07-May-2020 Client Reference: Sampled By: Managed Aguifer Recharge Kathryn Sharman Quote Reference : 5880 Purchase Order: 3700110012201

Amended Certificate of Analysis: dissolved Mn results added to samples 2,3,6, Total and dissolved sulfur added to samples 1,2, 3 and 6..

Sample Details		WATERS	WATERS	WATERS	WATERS
Lab Sample ID:		200506-138-1	200506-138-2	200506-138-3	200506-138-6
Client Sample ID:		20202242	20202243	20202244	20202245
Sample Date/Time		06/05/2020 10:57	06/05/2020 11:31	06/05/2020 12:15	06/05/2020 09:41
Description:		598 Bushmere Road- MAR injection Bore 350 GPE068	598 Bushmere Road- MAR injection bore 75 m GPE067	598 Bushmere Road MAR Pilot bore GPE 065	599 Bushmere Road GPE069
Chemistry Detailed					
Anions					
Bromide	mg/L	0.0866	0.0799	0.042	0.618
Chloride	mg/L	20.2	19.1	9.44	135
Nitrate (as N)	mg/L	<0.002	<0.002	<0.002	0.012
Nitrite (as N)	mg/L	<0.002	<0.002	<0.002	<0.004
Sulphate	mg/L	65.5	62.7	74.5	0.059
Ion Balance (Anions/Cations) by Calculati	on				
Anion Total	meq/L	8.0 *	7.7 *	5.6 *	16 *
Cation Total	meq/L	7.7 *	7.4 *	5.8 *	14 *
meq/L Difference	meq/L	0.26 *	0.35 *	0.18 *	1.4 *
Percent Difference	%	1.7 *	2.3 *	1.6 *	4.5 *
Sum of Anions + Cations	meq/L	16 *	15 *	11 *	30 *
Sample Parameters and Field Testing					
Laboratory Arrival Temperature	°C	2.3	2.3	2.3	2.3
Laboratory Arrival Time		08:30:00 AM	08:30:00 AM	08:30:00 AM	08:30:00 AM
General Testing					
Bicarbonate Alkalinity (as HCO3)	mg/L	370	360	230	730
Carbonate Alkalinity (as CO3)	mg/L	<4.0	<4.0	<2.0	<4.0
Conductivity (at 25 °C)	mS/m	77.7	72.7	54.1	149
Dissolved Ammoniacal Nitrogen (as N)	mg/L	0.99	1.5	0.17	3.0
Dissolved Reactive Phosphorus (as P)	mg/L	0.027	0.19	0.025	0.005
Hydroxide Alkalinity (as CaCO3)	mg/L	<4.0	<4.0	<2.0	<4.0
pH (at room temp c. 20 °C)	pH unit	7.6	7.5	8.1	7.2
Total Alkalinity (as CaCO3)	mg/L	300	290	190	600
Total Nitrogen (as N)	mg/L	1.1	1.7	0.25	3.3
Turbidity (Infrared Light Source)	FNU	17.2 *	12.2 *	47.5 *	61.8 *
Turbidity	NTU	14	12	39	60
Metals					
Dissolved Metals by ICP-MS—Trace (Rece	ived Filtered)			
Arsenic (Dissolved)	mg/L	0.002	0.0051	0.00094	0.0075
Calcium (Dissolved)	mg/L	87	77	79	180
Iron (Dissolved)	mg/L	0.22	0.18	0.037	0.089
Magnesium (Dissolved)	mg/L	9.8	9.7	7.9	20
Manganese (Dissolved)	mg/L	0.36	0.48	0.22	1.2

Sample Details (continued)	WATERS	WATERS	WATERS	WATERS
Lab Sample ID:	200506-138-1	200506-138-2	200506-138-3	200506-138-6
Client Sample ID:	20202242	20202243	20202244	20202245
Sample Date/Time:	06/05/2020 10:57	06/05/2020 11:31	06/05/2020 12:15	06/05/2020 09:41
Description:	598 Bushmere Road-	598 Bushmere Road-	598 Bushmere Road	599 Bushmere Road
	MAR injection Bore 350 GPE068	MAR injection bore 75 m GPE067	MAR Pilot bore GPE 065	GPE069
Metals				
Dissolved Metals by ICP-MS—Trace (Received Filtered	1			
Nickel (Dissolved) mg/L	<0.0001	<0.0001	0.00028	0.00014
Potassium (Dissolved) mg/L	6.4	6.5	3.4	9.0
Sodium (Dissolved) mg/L	52	56	25	76
Sulfur (Dissolved) mg/L	26	29	28	0.45
Zinc (Dissolved) mg/L	0.0014	<0.001	0.0011	0.0024
Total Metals by ICP-MS—Trace (Default Digest)				
Aluminium (Total) mg/L	0.21	0.15	0.0052	0.71
Arsenic (Total) mg/L	0.00061	0.0065	0.0011	0.015
Barium (Total) mg/L	1.8	1.5	1.4	3.9
Boron (Total) mg/L	0.15	0.15	0.11	0.22
Calcium (Total) mg/L	85	86	90	200
Iron (Total) mg/L	2.1	1.8	0.16	6.4
Magnesium (Total) mg/L	9.8	8.9	7.8	23
Manganese (Total) mg/L	0.35	0.47	0.21	1.2
Nickel (Total) mg/L	0.0031	0.0011	0.00042	0.0038
Potassium (Total) mg/L	6.6	5.7	3.5	8.7
Silicon (as Silica) (Total)	32	30	14	35
Sodium (Total) mg/L	53	54	24	78
Sulfur (Total) mg/L	25 *	25 *	27 *	0.33 *
Zinc (Total) mg/L	0.0052	0.0053	0.0014	0.0095
Organics				
Adhoc investigation				
Comments	Analysed by GCMS *	Analysed by GCMS *	Analysed by GCMS *	Analysed by GCMS
Galaxolide µg/L	<0.1 *	<0.1 *	<0.1 *	<0.1 *
Tonalid µg/L	<0.1 *	<0.1 *	<0.1 *	<0.1 *
Estrogen (As Received) by Liquid Chromatography-M	ass Spectrometry			
17 alpha-ethynylestradiol µg/L	1	<0.02	<0.02	<0.02
beta-Estradiol		<0.02	< 0.02	<0.02
Estriol µg/L		<0.004	<0.004	<0.004
Estrone µg/L	< 0.004	< 0.004	< 0.004	<0.004
Ethinylestradiol µg/L	<0.04	<0.04	<0.04	<0.04
Total Estrogen µg/L	<0.04	<0.04	<0.04	<0.04
Glyphosate & AMPA by Liquid Chromatography-Mass	Spectrometry			
AMPA µg/L	1	<0.04	<0.04	<0.04
Glyphosate µg/L		<0.04	<0.04	<0.04
Organonitrogen & Organophosphorus Pesticides by L	iquid Chromatography-M			
Acetochlor µg/L	1	< 0.1	<0.1	<0.1
Alachlor µg/L		<0.1	<0.1	<0.1
Atrazine desethyl	<0.1	<0.1	<0.1	<0.1
Atrazine desisopropyl µg/L	<0.1	<0.1	<0.1	<0.1
Atrazine µg/L	<0.1	<0.1	<0.1	<0.1
Azaconazole µg/L	<0.1	<0.1	<0.1	<0.1
Azinphos methyl µg/L	<0.1	<0.1	<0.1	<0.1
Benalaxyl µg/L	<0.1	<0.1	<0.1	<0.1
Bitertanol µg/L	<0.1	<0.1	<0.1	<0.1
Bromacil µg/L		<0.1	<0.1	<0.1
Butachlor µg/L	<0.1	<0.1	<0.1	<0.1
Carbaryl µg/L	<0.1	<0.1	<0.1	<0.1
Carbofuran µg/L	<0.1	<0.1	<0.1	<0.1
Chlorfluazuron µg/L	<0.4	<0.4	<0.4	<0.4
Chlorpyrifos methyl µg/L	<0.4	<0.4	<0.4	<0.4
Chlorpyrifos µg/L	<0.1	<0.1	<0.1	<0.1

Sample Details (continued)		WATERS	WATERS	WATERS	WATERS
Lab Sample ID:		200506-138-1	200506-138-2	200506-138-3	200506-138-6
Client Sample ID:		20202242	20202243	20202244	20202245
Sample Date/Time:		06/05/2020 10:57	06/05/2020 11:31	06/05/2020 12:15	06/05/2020 09:41
Description:		598 Bushmere Road-	598 Bushmere Road-	598 Bushmere Road	599 Bushmere Road
		MAR injection Bore 350 GPE068	MAR injection bore 75 m GPE067	MAR Pilot bore GPE 065	GPE069
Organics	I	330 GF 2008	III GF LOO7	005	
Organonitrogen & Organophosphorus Pe	esticides by Li	quid Chromatography-M	ass Spectrometry		
Chlortoluron	µg/L	<0.1	<0.1	<0.1	<0.1
Cyanazine	µg/L	<0.1	<0.1	<0.1	<0.1
Diazinon	µg/L	<0.1	<0.1	<0.1	<0.1
Dichlofluanid	µg/L	<40	<40	<40	<40
Dichlorvos	µg/L	<0.1	<0.1	<0.1	<0.1
Difenoconazole	µg/L	<0.1	<0.1	<0.1	<0.1
Dimethoate	µg/L	<0.1	<0.1	<0.1	<0.1
Diphenylamine	µg/L	<2.0	<2.0	<2.0	<2.0
Diuron	μg/L μg/L	<0.1	<0.1	<0.1	<0.1
Fenpropimorph	μg/L μg/L	<0.1	<0.1	<0.1	<0.1
Fluazifop butyl Fluometuron	μg/L μg/L	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1
Fluometuron	μg/L	<0.1	<0.1	<0.1 <0.1	<0.1
Fluvalinate tau	μg/L	<0.1	<0.1	<0.1 <2.0	<0.1
Furalaxyl	μg/L	<0.1	<0.1	<2.0	<0.1
Haloxyfop methyl	μg/L	<0.1	<0.1	<0.1	<0.1
Hexaconazole	μg/L	<0.1	<0.1	<0.1	<0.1
Hexazinone	µg/L	<0.1	<0.1	<0.1	<0.1
Imazapyr	µg/L	<0.1	<0.1	<0.1	<0.1
IPBC	µg/L	<0.1	<0.1	<0.1	<0.1
Kresoxim methyl	µg/L	<0.1	<0.1	<0.1	<0.1
Linuron	µg/L	<0.1	<0.1	<0.1	<0.1
Malathion	µg/L	<0.1	<0.1	<0.1	<0.1
Metalaxyl	µg/L	<0.1	<0.1	<0.1	<0.1
Metolachlor	µg/L	<0.1	<0.1	<0.1	<0.1
Metribuzin	µg/L	<0.1	<0.1	<0.1	<0.1
Metsulfuron	µg/L	<0.05	<0.05	<0.05	<0.05
Molinate	µg/L	<0.1	<0.1	<0.1	<0.1
Myclobutanil	μg/L	<0.1	<0.1	<0.1	<0.1
Naled	µg/L	<1.0	<1.0	<1.0	<1.0
Norflurazon	μg/L μg/L	<0.1	<0.1	<0.1	<0.1
Oryzalin	μg/L	<4.0 <0.1	<4.0 <0.1	<4.0	<4.0 <0.1
Oxadiazon Paclobutrazol	μg/L	<0.1	<0.1	<0.1 <0.1	<0.1
Parathion Ethyl	μg/L	<1.0	<1.0	<1.0	<1.0
Pendimethalin	µg/L	<0.1	<0.1	<0.1	<0.1
Pirimicarb	μg/L	<0.1	<0.1	<0.1	<0.1
Pirimiphos methyl	μg/L	<0.1	<0.1	<0.1	<0.1
Prochloraz	µg/L	<0.1	<0.1	<0.1	<0.1
Prometryne	µg/L	<0.1	<0.1	<0.1	<0.1
Propachlor	µg/L	<0.1	<0.1	<0.1	<0.1
Propanil	µg/L	<0.1	<0.1	<0.1	<0.1
Propazine	µg/L	<0.1	<0.1	<0.1	<0.1
Propiconazole	µg/L	<0.1	<0.1	<0.1	<0.1
Pyriproxifen	µg/L	<0.1	<0.1	<0.1	<0.1
Quizalofop ethyl	µg/L	<0.1	<0.1	<0.1	<0.1
Simazine	µg/L	<0.1	<0.1	<0.1	<0.1
Simetryn	µg/L	<0.1	<0.1	<0.1	<0.1
Sulfentrazone	µg/L	<2.0	<2.0	<2.0	<2.0
ТСМТВ	µg/L	<0.1	<0.1	<0.1	<0.1
Tebuconazol	μg/L	<0.1	<0.1	<0.1	<0.1
Terbacil	µg/L	<0.1	<0.1	<0.1	<0.1
Terbufos	μg/L	<1.0	<1.0	<1.0	<1.0
Terbumeton	μg/L μg/L	<0.1	<0.1	<0.1	<0.1
Terbuthylazine desethyl	µg/L	<0.1	<0.1	<0.1	<0.1

Sample Details (continued)		WATERS	WATERS	WATERS	WATERS
Lab Sample ID:		200506-138-1	200506-138-2	200506-138-3	200506-138-6
Client Sample ID:		20202242	20202243	20202244	20202245
Sample Date/Time:		06/05/2020 10:57	06/05/2020 11:31	06/05/2020 12:15	06/05/2020 09:41
Description:		598 Bushmere Road-	598 Bushmere Road-	598 Bushmere Road	599 Bushmere Road
,		MAR injection Bore 350 GPE068	MAR injection bore 75 m GPE067	MAR Pilot bore GPE 065	GPE069
Organics	-				
Organonitrogen & Organophosphorus Pest					
Terbuthylazine	µg/L	<0.1	<0.1	<0.1	<0.1
Terbutryn	µg/L	<0.1	<0.1	<0.1	<0.1
Thiabendazole	µg/L	<0.1	<0.1	<0.1	<0.1
Thiobencarb	µg/L	<0.1	<0.1	<0.1	<0.1
Tolylfluanide	μg/L	<40	<40	<40	<40
Triazophos	μg/L	<0.1	<0.1	<0.1	<0.1
Pharmaceutical and Personal Care Product	s by Liquid	Chromatography-Mass \$	Spectrometry		
Acesulfame	ng/L	<20	<20	<20	<20
Atenolol	ng/L	<0.5	<0.5	<0.5	<0.5
Benzophenone	ng/L	<20	<20	<20	<20
Bupropion	ng/L	<0.5	<0.5	<0.5	<0.5
Caffeine	ng/L	10	<0.5	<0.5	<0.5
Carbamazepine	ng/L	<0.5	<0.5	<0.5	<0.5
Ciprofloxacin	ng/L	<20	<20	<20	<20
Cotinine	ng/L	<0.5	<0.5	<0.5	<0.5
DEET	ng/L	<20	<20	<20	<20
Diclofenac	ng/L	<2	<2	<2	<2
Diltiazem	ng/L	<0.5	<0.5	<0.5	<0.5
Diphenhydramine	ng/L	<20	<20	<20	<20
Doxycycline	ng/L	<20	<20	<20	<20
Fluoxetine	ng/L	<0.5	<0.5	<0.5	<0.5
Gabapentin	ng/L	<0.5	<0.5	<0.5	<0.5
Gemfibrozil	ng/L	<0.5	<0.5	<0.5	<0.5
Ibuprofen	ng/L	<100	<100	<100	<100
Lamotrigine	ng/L	<0.5	<0.5	<0.5	<0.5
Metoprolol	ng/L	<0.5	<0.5	<0.5	<0.5
Naproxen	ng/L	<20	<20	<20	<20
Norcotinine	ng/L	<1	<1	<1	<1
Paracetamol	ng/L	<2	<2	<2	<2
Sucralose	ng/L	<0.5	<0.5	<0.5	<0.5
Sulfamethoxazole	ng/L	<0.5	<0.5	<0.5	<0.5
Triclocarban	ng/L	<20	<20	<20	<20
Triclosan	ng/L	<0.5	<0.5	<0.5	<0.5
Trimethoprim	ng/L	<0.5	<0.5	<0.5	<0.5
Varenicline	ng/L	<0.5	<0.5	<0.5	<0.5
Venlafaxine	ng/L	<0.5	<0.5	<0.5	<0.5
Total Organic Carbon by Non-dispersive inf	rared detect	ion			
Total Organic Carbon	mg/L	2.5	2.8	2.0	3.5
Microbiology					
Enterococci by Membrane Filtration					
Enterococci	cfu/100 mL	<1.6	<1.6	<1.6	<1.6
Escherichia coli by Membrane Filtration				1.0	
Escherichia coli	cfu/100 mL	<1.6	<1.6	-16	<1.6
		<1.0	<1.0	<1.6	<1.0
Faecal coliforms by Membrane Filtration					
Faecal coliforms	cfu/100 mL	<1.6	<1.6	<1.6	<1.6
Sample Details		WATERS			
Lab Sample ID:		200506-138-7			
Client Sample ID:		20202246			
Sample Date/Time		06/05/2020 10:06			
Description:		Waipaoa River at			
Description.		Infiltration Chamber			
		initiation onumber			

Sample Details (continued)		WATERS	
Lab Sample ID:		200506-138-7	
Client Sample ID:		20202246	
, Sample Date/Time:		06/05/2020 10:06	
Description:		Waipaoa River at	
<i>p</i> =		Infiltration Chamber	
Chemistry Detailed			
Anions			
Bromide	mg/L	0.026	
Chloride	mg/L	11.3	
Nitrate (as N)	mg/L	0.0666	
Nitrite (as N)	mg/L mg/L	<0.002 76.3	
Sulphate	iiig/L	70.3	
Sample Parameters and Field Testing	°C	0.0	
Laboratory Arrival Temperature Laboratory Arrival Time	U	2.3 08:30:00 AM	
General Testing			
	mg/L	400	
Bicarbonate Alkalinity (as HCO3) Carbonate Alkalinity (as CO3)	mg/L	180 <4.0	
Dissolved Ammoniacal Nitrogen (as	mg/L	0.01	
N)			
Dissolved Reactive Phosphorus (as P)	mg/L	0.006	
Hydroxide Alkalinity (as CaCO3)	mg/L	<4.0	
Total Alkalinity (as CaCO3)	mg/L	140	
Turbidity (Infrared Light Source)	FNU	712 *	
Turbidity	NTU	700	
Organics			
Organonitrogen & Organophosphorus Pesticides		uid Chromatography-Mass Spe	strometry
Acetochlor	µg/L	<0.1	
Alachlor	µg/L	<0.1	
Atrazine designment	μg/L μg/L	<0.1 <0.1	
Atrazine desisopropyl Atrazine	μg/L	<0.1	
Azaconazole	μg/L	<0.1	
Azinphos methyl	μg/L	<0.1	
Benalaxyl	µg/L	<0.1	
Bitertanol	µg/L	<0.1	
Bromacil	µg/L	<0.1	
Butachlor	µg/L	<0.1	
Carbaryl	µg/L	<0.1	
Carbofuran	μg/L μg/L	<0.1	
Chlorfluazuron Chlorpyrifos methyl	μg/L μg/L	<0.4 <0.4	
Chlorpyrifos	μg/L	<0.4 <0.1	
Chlortoluron	µg/L	<0.1	
Cyanazine	μg/L	<0.1	
Diazinon	µg/L	<0.1	
Dichlofluanid	µg/L	<40	
Dichlorvos	µg/L	<0.1	
Difenoconazole	µg/L	<0.1	
Dimethoate	µg/L	<0.1	
Diphenylamine	µg/L	<2.0	
Diuron	μg/L μg/L	<0.1 <0.1	
Fenpropimorph Fluazifop butyl	μg/L	<0.1 <0.1	
Fluometuron	μg/L	<0.1	
Flusilazole	μg/L	<0.1	
Fluvalinate tau	µg/L	<2.0	
Furalaxyl	µg/L	<0.1	
Haloxyfop methyl	µg/L	<0.1	
Hexaconazole	µg/L	<0.1	
Hexazinone	μg/L μg/L	<0.1 <0.1	
Imazapyr			

Sample Details (continued)		WATERS	
Lab Sample ID:		200506-138-7	
Client Sample ID:		20202246	
Sample Date/Time:		06/05/2020 10:06	
Description:		Waipaoa River at	
Description.		Infiltration Chamber	
Organics	· · · · ·		
Organonitrogen & Organophosphorus P	esticides by Liqu	id Chromatography-Mass Spectrometry	
IPBC	μg/L	<0.1	
Kresoxim methyl	µg/L	<0.1	
Linuron	µg/L	<0.1	
Malathion	µg/L	<0.1	
Metalaxyl	µg/L	<0.1	
Metolachlor	µg/L	<0.1	
Metribuzin	µg/L	<0.1	
Metsulfuron	µg/L	<0.05	
Molinate	µg/L	<0.1	
Myclobutanil	μg/L	<0.1	
Naled	μg/L	<1.0	
Norflurazon	μg/L	<0.1	
Oryzalin	μg/L	<4.0	
Oxadiazon	µg/L	<0.1	
Paclobutrazol	μg/L	<0.1	
Parathion Ethyl	μg/L	<1.0	
Pendimethalin	μg/L	<0.1	
Pirimicarb	µg/L	<0.1	
Pirimiphos methyl	μg/L	<0.1	
Prochloraz	µg/L	<0.1	
Prometryne	μg/L	<0.1	
Propachlor	µg/L	<0.1	
Propanil	μg/L	<0.1	
Propazine	μg/L	<0.1	
Propiconazole	μg/L	<0.1	
Pyriproxifen	μg/L	<0.1	
Quizalofop ethyl	μg/L	<0.1	
Simazine	μg/L	<0.1	
Simetryn	μg/L	<0.1	
Sulfentrazone	µg/L	<2.0	
ТСМТВ	µg/L	<0.1	
Tebuconazol	µg/L	<0.1	
Terbacil	µg/L	<0.1	
Terbufos	µg/L	<1.0	
Terbumeton	μg/L	<0.1	
Terbuthylazine desethyl	μg/L	<0.1	
Terbuthylazine	μg/L	<0.1	
Terbutryn	μg/L	<0.1	
Thiabendazole	µg/L	<0.1	
Thiobencarb	μg/L	<0.1	
Tolylfluanide	μg/L	<40	
Triazophos	µg/L	<0.1	
Microbiology			
Enterococci by Membrane Filtration			
Enterococci	cfu/100 mL	2000	
Escherichia coli by Membrane Filtration			
Escherichia coli	cfu/100 mL	1400	
Faecal coliforms by Membrane Filtration	1		
Faecal coliforms	cfu/100 mL	1400	
	Results marked with	* are not accredited to International Accreditation New Zealand	
		d by the client they are tested as received. A dash indicates no test performed.	

 Reference Methods The sample(s) referred to in this report were analysed by the following method(s)

 Analyte
 Method Reference
 MDL
 Samples
 Location

Chemistry Detailed				
Anions				
Bromide	APHA (online edition) 4110 B	0.005 mg/L	All	Auckland
Chloride	APHA (online edition) 4110 B	0.02 mg/L	All	Auckland
Nitrate (as N)	APHA (online edition) 4110 B	0.002 mg/L	All	Auckland
Nitrite (as N)	APHA (online edition) 4110 B	0.002 mg/L	All	Auckland
Sulphate	APHA (online edition) 4110 B	0.02 mg/L	All	Auckland
		0.02 mg/2		
on Balance (Anions/Cations) by Calculation			1006	Augldond
	APHA (online edition) 1030 E	meq/L	1, 2, 3, 6	Auckland
Cation Total	APHA (online edition) 1030 E	meq/L	1, 2, 3, 6	Auckland
neq/L Difference	APHA (online edition) 1030 E	meq/L	1, 2, 3, 6	Auckland
Percent Difference	APHA (online edition) 1030 E		1, 2, 3, 6	Auckland
Sum of Anions + Cations	APHA (online edition) 1030 E		1, 2, 3, 6	Auckland
Sample Parameters and Field Testing				
aboratory Arrival Temperature	APHA (online edition) 2550 B		All	Auckland
aboratory Arrival Time	APHA (online edition) 2550 B		All	Auckland
Concret Testing				
General Testing		1 m~//		Augkland
Bicarbonate Alkalinity (as HCO3) by Titration	APHA (online edition) 2320 B	1 mg/L	All	Auckland
Carbonate Alkalinity (as CO3) by Titration	APHA (online edition) 2320 B	1 mg/L	All	Auckland
Conductivity (at 25 °C) by Electrode	APHA (online edition) 2510 B	0.5 mS/m	1, 2, 3, 6	Auckland
Dissolved Ammoniacal Nitrogen (as N) by Colorimetry/ Discrete Analyser	HMSO (1981) ISBN 0117516139	0.005 mg/L	All	Auckland
Discrete Analyser Dissolved Reactive Phosphorus (as P) by Colorimetry/ Discrete Analyser	APHA (online edition) 4500-P F	0.002 mg/L	All	Auckland
lydroxide Alkalinity (as CaCO3) by Titration	APHA (online edition) 2320 B	1 mg/L	All	Auckland
oH (at room temp c. 20 °C) by Electrode	APHA (online edition) 4500-H B (Tested beyond 15 minute APHA holding time)	0.1 pH unit	1, 2, 3, 6	Auckland
Total Alkalinity (as CaCO3) by Titration	APHA (online edition) 2320 B	1 mg/L	All	Auckland
otal Nitrogen (as N) by Persulphate Digestion and Flow	APHA (online edition) 4500-P J (modified), 4500-NO3 I	0.010 mg/L	1, 2, 3, 6	Auckland
Furbidity (Infrared Light Source) by Nephelometry	ISO 7027-1:2016	0.05 FNU	All	Auckland
······································				
Turbidity by Nephelometry	APHA (online edition) 2130 B (modified)	0.05 NTU	All	Auckland
Turbidity by Nephelometry				
Furbidity by Nephelometry Metals				
Furbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered)	APHA (online edition) 2130 B (modified)	0.05 NTU	All	Auckland
Furbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L	All 1, 2, 3, 6	Auckland
Turbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L	All 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland
Turbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) ron (Dissolved)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland Auckland
Turbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) ron (Dissolved) Magnesium (Dissolved)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland Auckland Auckland
Furbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) ron (Dissolved) Magnesium (Dissolved) Manganese (Dissolved)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1, 2, 3, 6 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland Auckland Auckland
Turbidity by Nephelometry Vetals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) ron (Dissolved) Magnesium (Dissolved) Manganese (Dissolved) Vickel (Dissolved)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.00010 mg/L	All 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland Auckland Auckland Auckland
Turbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) ron (Dissolved) Magnesium (Dissolved) Magnese (Dissolved) Nickel (Dissolved) Potassium (Dissolved)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.00010 mg/L 0.002 mg/L	All 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Furbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) ron (Dissolved) Magnesium (Dissolved) Magnese (Dissolved) Nickel (Dissolved) Potassium (Dissolved) Sodium (Dissolved)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.00010 mg/L 0.02 mg/L 0.1 mg/L	All 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Turbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Calcium (Dissolved) Magnesium (Dissolved) Manganese (Dissolved) Nickel (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Sulfur (Dissolved)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.00010 mg/L 0.02 mg/L 0.02 mg/L 0.1 mg/L 0.010 mg/L	All 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Turbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Calcium (Dissolved) Magnesium (Dissolved) Manganese (Dissolved) Nickel (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Sulfur (Dissolved)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.00010 mg/L 0.02 mg/L 0.1 mg/L	All 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Turbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Aagnesium (Dissolved) Maganese (Dissolved) Maganese (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Sulfur (Dissolved) Cinc (Dissolved)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.00010 mg/L 0.02 mg/L 0.02 mg/L 0.1 mg/L 0.010 mg/L	All 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Turbidity by Nephelometry	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.00010 mg/L 0.02 mg/L 0.02 mg/L 0.1 mg/L 0.010 mg/L	All 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Turbidity by Nephelometry	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.00010 mg/L 0.02 mg/L 0.1 mg/L 0.010 mg/L 0.001 mg/L	All 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Turbidity by Nephelometry	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.02 mg/L 0.02 mg/L 0.1 mg/L 0.010 mg/L 0.001 mg/L 0.001 mg/L 0.005 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Turbidity by Nephelometry	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.010 mg/L 0.010 mg/L 0.001 mg/L 0.001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L	All 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Turbidity by Nephelometry Vetals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Calcium (Dissolved) Magnesium (Dissolved) Magnese (Dissolved) Vickel (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Cotal Metals by ICP-MS—Trace (Default Digest) Aluminium (Total) Arsenic (Total) Boron (Total)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.0010 mg/L 0.02 mg/L 0.010 mg/L 0.001 mg/L 0.005 mg/L 0.0002 mg/L 0.0002 mg/L 0.005 mg/L	All 1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Turbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Irrsenic (Dissolved) Calcium (Dissolved) Calgesium (Dissolved) Magnesium (Dissolved) Magnese (Dissolved) Magnese (Dissolved) Potassium (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Catal Metals by ICP-MS—Trace (Default Digest) Numinium (Total) Arsenic (Total) Barium (Total) Calcium (Total)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.0010 mg/L 0.010 mg/L 0.010 mg/L 0.001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Arbitistic Structure Virbidity by Nephelometry Arbitistic Solved Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Condition (Dissolved) Anganesium (Dissolved) Anganese (Dissolved) Anaganese (Dissolved) Arbitickel (Dissolved) Bordium (Dissolved) Sodium (Total) Auminium (Total) Soron (Total) Calcium (Total) Soron (Total)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.02 mg/L 0.02 mg/L 0.010 mg/L 0.010 mg/L 0.005 mg/L 0.0005 mg/L 0.0002 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Verbidity by Nephelometry Vetals Dissolved Metals by ICP-MS—Trace (Received Filtered) vrsenic (Dissolved) Calcium (Dissolved) Condition (Dissolved) Magnesium (Dissolved) Magnese (Dissolved) Magnese (Dissolved) Magnesium (Dissolved) Magnesium (Dissolved) Potassium (Dissolved) Sodium (Total) Auminium (Total) Soron (Total) Calcium (Total) Magnesium (Total) Magnesium (Total)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.002 mg/L 0.010 mg/L 0.010 mg/L 0.001 mg/L 0.0005 mg/L 0.0002 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.001 mg/L 0.002 mg/L 0.002 mg/L 0.001 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Aretals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Condition (Dissolved) Magnesium (Dissolved) Magnesium (Dissolved) Magnese (Dissolved) Magnese (Dissolved) Magnesium (Dissolved) Potassium (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Cotal Metals by ICP-MS—Trace (Default Digest) Juminium (Total) Arsenic (Total) Barium (Total) Coron (Total) Calcium (Total) Magnesium (Total) Magnesium (Total) Magnesium (Total) Magnesium (Total)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.002 mg/L 0.02 mg/L 0.02 mg/L 0.010 mg/L 0.001 mg/L 0.0005 mg/L 0.0005 mg/L 0.005 mg/L 0.005 mg/L 0.001 mg/L 0.002 mg/L 0.001 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Turbidity by Nephelometry Vietals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Calgins (Dissolved) Magnesium (Dissolved) Magnese (Dissolved) Magnese (Dissolved) Vickel (Dissolved) Potassium (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Cotal Metals by ICP-MS—Trace (Default Digest) Numinium (Total) Arsenic (Total) Barium (Total) Soor (Total) Calcium (Total) Anganese (Total) Magnesium (Total) Magnesium (Total) Magnesium (Total) Magnesium (Total) Magnesium (Total) Magnesium (Total) Magnese (Total) Marganese (Total)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.00010 mg/L 0.02 mg/L 0.010 mg/L 0.010 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.005 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.0005 mg/L 0.001 mg/L 0.0005 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Turbidity by Nephelometry Vetals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Aaganesium (Dissolved) Aaganese (Dissolved) Aaganese (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Cotal Metals by ICP-MS—Trace (Default Digest) Auminium (Total) Arsenic (Total) Calcium (Total) Aaganesium (Total) Aaganese (Total) Aaganese (Total) Potassium (To	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edi	0.05 NTU 0.00010 mg/L 0.002 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.00010 mg/L 0.02 mg/L 0.01 mg/L 0.010 mg/L 0.001 mg/L 0.00010 mg/L 0.0005 mg/L 0.005 mg/L 0.0005 mg/L 0.000 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1	Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland Auckland
Furbidity by Nephelometry Vetals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Magnesium (Dissolved) Magnesium (Dissolved) Vickel (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Cotal Metals by ICP-MS—Trace (Default Digest) Auminium (Total) Arsenic (Total) Barium (Total) Calcium (Total) Magnesium (Total) Magnese (Total) Magnese (Total) Nickel (Total) Potassium (Total) Solicon (as Silica) (Total)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.002 mg/L 0.002 mg/L 0.001 mg/L 0.0010 mg/L 0.00010 mg/L 0.02 mg/L 0.02 mg/L 0.010 mg/L 0.001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0001 mg/L 0.0005 mg/L 0.005 mg/L 0.0005 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1	Auckland Auckland
Turbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Magnesium (Dissolved) Magnesium (Dissolved) Nickel (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Total Metals by ICP-MS—Trace (Default Digest) Aluminium (Total) Arsenic (Total) Boron (Total) Calcium (Total) Magnesium (Total) Nickel (Total) Potassium (Total) Nickel (Total) Sodium (Total) Silicon (as Silica) (Total) Sodium (Total)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.002 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.00010 mg/L 0.02 mg/L 0.01 mg/L 0.010 mg/L 0.001 mg/L 0.00010 mg/L 0.0005 mg/L 0.005 mg/L 0.0005 mg/L 0.000 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1	Auckland Auckland
Furbidity by Nephelometry Metals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Magnesium (Dissolved) Magnesium (Dissolved) Vickel (Dissolved) Potassium (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Cite (Dissolved) Fotal Metals by ICP-MS—Trace (Default Digest) Aluminium (Total) Arsenic (Total) Barium (Total) Calcium (Total) Magnesium (Total) Magnesium (Total) Magnesium (Total) Magnesium (Total) Vickel (Total) Potassium (Total) Potassium (Total) Solicon (as Silica) (Total)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.002 mg/L 0.002 mg/L 0.001 mg/L 0.0010 mg/L 0.00010 mg/L 0.02 mg/L 0.02 mg/L 0.010 mg/L 0.001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.001 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0001 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.0005 mg/L 0.005 mg/L 0.0005 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1	Auckland Auckland
Furbidity by Nephelometry Vetals Dissolved Metals by ICP-MS—Trace (Received Filtered) Arsenic (Dissolved) Calcium (Dissolved) Vagnesium (Dissolved) Vagnesium (Dissolved) Potassium (Dissolved) Potassium (Dissolved) Sodium (Dissolved) Sodium (Dissolved) Cotal Metals by ICP-MS—Trace (Default Digest) Auminium (Total) Arsenic (Total) Soron (Total) Calcium (Total) Vagnesium (Total) Vagnesium (Total) Vagnesium (Total) Vagnesium (Total) Vagnesium (Total) Solicon (as Silica) (Total) Sodium (Total)	APHA (online edition) 2130 B (modified) APHA (online edition) 3125 B by ICPMS APHA (online edition) 3125 B by ICPMS	0.05 NTU 0.00010 mg/L 0.010 mg/L 0.002 mg/L 0.001 mg/L 0.0005 mg/L 0.002 mg/L 0.02 mg/L 0.02 mg/L 0.010 mg/L 0.001 mg/L 0.0005 mg/L 0.0005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.005 mg/L 0.001 mg/L 0.005 mg/L 0.001 mg/L 0.005 mg/L 0.001 mg/L 0.005 mg/L 0.001 mg/L 0.005 mg/L 0.001 mg/L 0.005 mg/L 0.001 mg/L 0.005 mg/L 0.001 mg/L 0.005 mg/L 0.001 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.001 mg/L 0.005 mg/L 0.001 mg/L 0.005 mg/L 0.001 mg/L 0.001 mg/L 0.005 mg/L 0.001 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.001 mg/L 0.005 mg/L 0.001 mg/L 0.005 mg/L	All 1, 2, 3, 6 1, 2, 3, 6 1	Auckland Auckland

Organics				
Adhoc investigation				
Comments	As specified above		1, 2, 3, 6	Auckland
Estrogen (As Received) by Liquid Chrom				
17 alpha-ethynylestradiol	SPE cleanup, LC MS/MS	0.02 µg/L	1, 2, 3, 6	Auckland
beta-Estradiol	SPE cleanup, LC MS/MS	0.02 µg/L	1, 2, 3, 6	Auckland
Estriol	SPE cleanup, LC MS/MS	0.004 µg/L	1, 2, 3, 6	Auckland
Estrone	SPE cleanup, LC MS/MS	0.004 µg/L	1, 2, 3, 6	Auckland
Ethinylestradiol	SPE cleanup, LC MS/MS	0.04 µg/L	1, 2, 3, 6	Auckland
Total Estrogen	SPE cleanup, LC MS/MS	0.004 µg/L	1, 2, 3, 6	Auckland
Glyphosate & AMPA by Liquid Chromatog	graphy-Mass Spectrometry			
AMPA	In-house by LC-MS	0.04 µg/L	1, 2, 3, 6	Auckland
Glyphosate	In-house by LC-MS	0.04 µg/L	1, 2, 3, 6	Auckland
Organonitrogen & Organophosphorus Pe	esticides by Liquid Chromatography-Mass Spectrom	etry		
Acetochlor	In-house by LC-MS	0.1 μg/L	All	Auckland
Alachlor	In-house by LC-MS	0.1 µg/L	All	Auckland
Atrazine desethyl	In-house by LC-MS	0.1 µg/L	All	Auckland
Atrazine desisopropyl	In-house by LC-MS	0.1 µg/L	All	Auckland
Atrazine	In-house by LC-MS	0.1 μg/L	All	Auckland
zaconazole	In-house by LC-MS	0.1 μg/L	All	Auckland
zinphos methyl	In-house by LC-MS	0.1 μg/L	All	Auckland
Benalaxyl	In-house by LC-MS	0.1 μg/L	All	Auckland
Bitertanol	In-house by LC-MS	0.1 μg/L	All	Auckland
Bromacil	In-house by LC-MS	0.1 μg/L	All	Auckland
Butachlor	In-house by LC-MS	0.1 μg/L	All	Auckland
Carbaryl	In-house by LC-MS	0.1 μg/L	All	Auckland
Carbofuran	In-house by LC-MS	0.1 μg/L	All	Auckland
Chlorfluazuron	In-house by LC-MS	0.4 μg/L	All	Auckland
Chlorpyrifos methyl	In-house by LC-MS	0.4 μg/L	All	Auckland
Chlorpyrifos	In-house by LC-MS	0.1 μg/L	All	Auckland
Chlortoluron	In-house by LC-MS	0.1 μg/L	All	Auckland
Cyanazine	In-house by LC-MS	0.1 μg/L	All	Auckland
Diazinon	In-house by LC-MS	0.1 μg/L	All	Auckland
Dichlofluanid	In-house by LC-MS	40 μg/L	All	Auckland
Dichlorvos	In-house by LC-MS	40 μg/L 0.1 μg/L	All	Auckland
Difenoconazole	In-house by LC-MS	0.1 μg/L	All	Auckland
Dimethoate	In-house by LC-MS	0.1 μg/L	All	Auckland
Diphenylamine	In-house by LC-MS	2 µg/L	All	Auckland
Diuron	In-house by LC-MS	2 μg/L 0.1 μg/L	All	Auckland
enpropimorph	In-house by LC-MS	0.1 μg/L	All	Auckland
luazifop butyl	In-house by LC-MS	0.1 μg/L	All	Auckland
	-	0.1 μg/L	All	Auckland
Flusilazole	In-house by LC-MS In-house by LC-MS	0.1 μg/L	All	Auckland
Fluvalinate tau	In-house by LC-MS	2 μg/L	All	Auckland
Furalaxyl	In-house by LC-MS	2 μg/L 0.1 μg/L	All	Auckland
łaloxyfop methyl	-		All	Auckland
lexaconazole	In-house by LC-MS In-house by LC-MS	0.1 μg/L	All	Auckland
lexacinazole	In-house by LC-MS In-house by LC-MS	0.1 μg/L	All	Auckland
		0.1 μg/L 0.1 μg/L	All	Auckland
nazapyr PBC	In-house by LC-MS		All	Auckland
	In-house by LC-MS	0.1 µg/L	All	Auckland
resoxim methyl	In-house by LC-MS	0.1 µg/L		
inuron Iolathion	In-house by LC-MS	0.1 µg/L	All	Auckland
1alathion	In-house by LC-MS	0.1 μg/L	All	Auckland
1etalaxyl	In-house by LC-MS	0.1 μg/L	All	Auckland
1etolachlor	In-house by LC-MS	0.1 µg/L	All	Auckland
1etribuzin	In-house by LC-MS	0.1 µg/L	All	Auckland
1etsulfuron	In-house by LC-MS	0.05 µg/L	All	Auckland
Aolinate	In-house by LC-MS	0.1 µg/L	All	Auckland
<i>Ayclobutanil</i>	In-house by LC-MS	0.1 µg/L	All	Auckland
Valed	In-house by LC-MS	1 µg/L	All	Auckland
Norflurazon	In-house by LC-MS	0.1 µg/L	All	Auckland

Organics				
Organonitrogen & Organophosphorus Pesticides by Liqu	id Chromatography-Mass Spectrometry			
Oryzalin	In-house by LC-MS	4 µg/L	All	Auckland
Oxadiazon	In-house by LC-MS	0.1 µg/L	All	Auckland
Paclobutrazol	In-house by LC-MS	0.1 µg/L	All	Auckland
Parathion Ethyl	In-house by LC-MS	1 µg/L	All	Auckland
Pendimethalin	In-house by LC-MS	0.1 µg/L	All	Auckland
Pirimicarb	In-house by LC-MS	0.1 µg/L	All	Auckland
Pirimiphos methyl	In-house by LC-MS	0.1 µg/L	All	Auckland
Prochloraz	In-house by LC-MS	0.1 µg/L	All	Auckland
Prometryne	In-house by LC-MS	0.1 µg/L	All	Auckland
Propachlor	In-house by LC-MS	0.1 µg/L	All	Auckland
Propanil	In-house by LC-MS	0.1 µg/L	All	Auckland
Propazine	In-house by LC-MS	0.1 µg/L	All	Auckland
Propiconazole	In-house by LC-MS	0.1 µg/L	All	Auckland
Pyriproxifen	In-house by LC-MS	0.1 µg/L	All	Auckland
Quizalofop ethyl	In-house by LC-MS	0.1 µg/L	All	Auckland
Simazine	In-house by LC-MS	0.1 µg/L	All	Auckland
Simetryn	In-house by LC-MS	0.1 µg/L	All	Auckland
Sulfentrazone	In-house by LC-MS	2 µg/L	All	Auckland
тсмтв	In-house by LC-MS	0.1 µg/L	All	Auckland
Tebuconazol	In-house by LC-MS	0.1 µg/L	All	Auckland
Terbacil	In-house by LC-MS	0.1 µg/L	All	Auckland
Terbufos	In-house by LC-MS	1 µg/L	All	Auckland
Terbumeton	In-house by LC-MS	0.1 µg/L	All	Auckland
Terbuthylazine desethyl	In-house by LC-MS	0.1 µg/L	All	Auckland
Terbuthylazine	In-house by LC-MS	0.1 µg/L	All	Auckland
Terbutryn	In-house by LC-MS	0.1 µg/L	All	Auckland
Thiabendazole	In-house by LC-MS	0.1 µg/L	All	Auckland
Thiobencarb	In-house by LC-MS	0.1 µg/L	All	Auckland
Tolylfluanide	In-house by LC-MS	40 µg/L	All	Auckland
Triazophos	In-house by LC-MS	0.1 µg/L	All	Auckland
Pharmaceutical and Personal Care Products by Liquid Ch	romatography-Mass Spectrometry			
Acesulfame	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6	Auckland
Atenolol	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Benzophenone	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6	Auckland
Bupropion	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Caffeine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Carbamazepine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Ciprofloxacin	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6	Auckland
Cotinine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
DEET	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6	Auckland
Diclofenac	Instrumental Techniques by LC/MS 2.70	2 ng/L	1, 2, 3, 6	Auckland
Diltiazem	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Diphenhydramine	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6	Auckland
Doxycycline	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6	Auckland
Fluoxetine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Gabapentin	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Gemfibrozil	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Ibuprofen	Instrumental Techniques by LC/MS 2.70	100 ng/L	1, 2, 3, 6	Auckland
Lamotrigine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Metoprolol	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Naproxen	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6	Auckland
Norcotinine	Instrumental Techniques by LC/MS 2.70	1 ng/L	1, 2, 3, 6	Auckland
Paracetamol	Instrumental Techniques by LC/MS 2.70	2 ng/L	1, 2, 3, 6	Auckland
Sucralose	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Sulfamethoxazole	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Triclocarban	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6	Auckland
Triclosan	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Trimethoprim	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Varenicline	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland

Venlafaxine	by Liquid Chromatography-Mass Spectrometry	0.5 ===//	1, 2, 3, 6	Auckland
venialaxine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 0	Auckianu
Total Organic Carbon by Non-dispersive infra	ared detection			
Total Organic Carbon	APHA (online edition) 5310 B	0.1 mg/L	1, 2, 3, 6	Auckland
Microbiology				
Enterococci by Membrane Filtration				
Enterococci	APHA (online edition) 9230 C	2 cfu/100 mL	All	Auckland
Escherichia coli by Membrane Filtration				
Escherichia coli	USEPA Method 1603	2 cfu/100 mL	All	Auckland
Faecal coliforms by Membrane Filtration				
Faecal coliforms	APHA (online edition) 9222 D	2 cfu/100 mL	All	Auckland
Preparations				
Digest for Total Metals in Liquids	In House (4:1 Nitric:Hydrochloric Acid, 95°C 2 hours)		1, 2, 3, 6	Auckland
Membrane Filtration (0.45 μm)	APHA (online edition) 4500-P B (preliminary filtration)		All	Auckland

Samples, with suitable preservation and stability of analytes, will be held by the laboratory for a period of two weeks after results have been reported, unless otherwise advised by the submitter.

Watercare Laboratory Services is a division of Watercare Services Limited .

This report may not be reproduced, except in full, without the written authority of the Operations Manager.

Hompane

Peter Boniface KTP Signatory

Watercare Laboratory Services

Watercare Laboratory Services

Watercare Services Limited

52 Aintree Ave, Auckland Airport, Auckland, 2150 PO Box 107028, Auckland, 2150 T: (09) 539 7600 F: (09) 539 7601 clientsupport@water.co.nz www.watercarelabs.co.nz

370982-0

Certificate of Analysis Laboratory Reference:200527-108

Attention:Paul MurphyClient:GISBORNE DISTRICT COUNCILAddress:PO Box 747, Gisborne, 4040Client Reference:Managed Aquifer RechargePurchase Order:3700110012201

Final Report: Report Issue Date: Received Date: Sampled By: Quote Reference : 371215-0 Replaces Report 13-Jul-2020 27-May-2020 Kathryn Sharman 5880

Tonalid and galaxolid were analysed by APHA 6410B modified. The detection limits are listed below. Amended report: Report reissued with the Enterococci results for sample 200527-108-2 Amended report: Replaces interim

Sample Details		WATERS	WATERS	WATERS	WATERS
Lab Sample ID:	ļ	200527-108-1	200527-108-2	200527-108-3	200527-108-5
Client Sample ID:		20202377	20202378	20202379	20202380
Sample Date/Time		26/05/2020 09:43	26/05/2020 10:17	26/05/2020 10:49	26/05/2020 11:09
Description:		598 Bushmere Road-	598 Bushmere Road-	598 Bushmere Road	598 Bushmere Road
		MAR injection Bore	MAR injection bore 75	MAR Pilot bore GPE	MAR Headworks
		350 GPE068	m GPE067	065	outlet
Chemistry Detailed					
Anions					
Bromide	mg/L	0.0891	0.0731	0.031	0.027
Chloride	mg/L	20.9	17.7	10.1	9.33
Nitrate (as N)	mg/L	0.0029	<0.002	0.1	0.0656
Nitrite (as N)	mg/L	<0.002	<0.002	<0.002	<0.002
Sulphate	mg/L	61.1	63.4	93.5	90.9
Ion Balance (Anions/Cations) by Calculation	·				
Anion Total	meq/L	7.7 *	7.4 *	5.3 *	5.0 *
Cation Total	meq/L		7.1 *	5.1 *	4.9 *
meq/L Difference	meq/L		0.26 *	0.17 *	0.97e-1 *
Percent Difference	%	3.6 *	1.8 *	1.6 *	0.97 *
Sum of Anions + Cations	meq/L	16 *	14 *	10 *	10 *
Sample Parameters and Field Testing					
Laboratory Arrival Temperature	°C	10.4	10.4	10.4	10.4
Laboratory Arrival Time	!	08:45:00 AM	08:45:00 AM	08:45:00 AM	08:45:00 AM
General Testing					
Bicarbonate Alkalinity (as HCO3)	mg/L	360	340	190	180
Carbonate Alkalinity (as CO3)	mg/L		<2.0	<1.0	<1.0
Dissolved Ammoniacal Nitrogen (as	mg/L	1.1	1.5	0.013	0.013
N)					
Hydroxide Alkalinity (as CaCO3)	mg/L	<2.0	<2.0	<1.0	<1.0
Total Alkalinity (as CaCO3)	mg/L	200	280	150	140
Total Nitrogen (as N)	mg/L	1.2	1.8	0.22	0.2
Turbidity (Infrared Light Source)	FNU	20:0	10.3 *	0.24 *	5.84 *
Turbidity	NTU	25	9.1	0.20	4.1
Metals					
Dissolved Metals by ICP-MS—Trace (Receive	ed Filtered	l)			
Arsenic (Dissolved)	mg/L	0.0011	0.0028	0.00047	0.00047
Cadmium (Dissolved)	mg/L	<0.00005	<0.00005	<0.00005	<0.00005
Calcium (Dissolved)	mg/L	94	79	67	63
Iron (Dissolved)	mg/L	0.057	0.0059	0.0068	<0.002
Magnesium (Dissolved)	mg/L	11	8.8	6.9	6.8
Manganese (Dissolved)	mg/L	0.37	0.44	0.055	0.00083
	,	1			

	WATERS	WATERS	WATERS	WATERS
	200527-108-1	200527-108-2	200527-108-3	200527-108-5
				20202380
				26/05/2020 11:09
				598 Bushmere Road
		•••		MAR Headworks
	350 GPE068	m GPE067	065	outlet
	<u>,</u>			
	1	5.0	2.0	2.6
-				2.6
	51	50	20	20
ma/L	0.0036	0.0046	0.0005	0.00051
•				61
-				0.11
-	-			6.7
mg/L				0.015
mg/L	6.0	5.7	2.6	2.5
mg/L	52	48	25	25
		· -		
	Analysed by GCMS *	Analysed by GCMS *	Analysed by GCMS *	Analysed by GCMS
mg/L	<0.0001 *	<0.0001 *	<0.0001 *	<0.0001 *
mg/L	<0.0001 *	<0.0001 *	<0.0001 *	<0.0001 *
phy-Ma	ss Spectrometry			
μg/L	1	<0.02	<0.02	<0.02
µg/L	<0.02	<0.02	<0.02	<0.02
µg/L	< 0.004	< 0.004	< 0.004	<0.004
µg/L	<0.004	<0.004	< 0.004	<0.004
µg/L	<0.04	<0.04	<0.04	<0.04
µg/L	<0.04	<0.04	<0.04	<0.04
	Spectrometry			
	<0.04		<0.04	<0.04
			<0.04	<0.04
	<0.1	<0.1		<0.1
				<0.1
				<0.1
				<0.1
				<0.1
				<0.1
				<0.1
				<0.1
				<0.1 <0.1
				<0.1
				<0.1
				<0.1
				<0.4
				<0.4
				<0.4
μg/L				<0.1
μg/L				<0.1
μg/L				<0.1
μg/L				<40
μg/L	<0.1	<0.1	<0.1	<0.1
	<0.1	<0.1	<0.1	<0.1
µg/L	<u.1< td=""><td>-U.I</td><td></td><td></td></u.1<>	-U.I		
μg/L μg/L	<0.1	<0.1	<0.1	<0.1
				<0.1 <2.0
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	200527-108-1 20202377 26/05/2020 09:43 598 Bushmere Road- MAR injection Bore 350 GPE068 mg/L 6.4 mg/L 6.4 mg/L 2.6 mg/L 2.6 mg/L 2.6 mg/L 0.0036 mg/L 2.6 mg/L 0.37 mg/L 6.0 mg/L 6.0.0 mg/L 6.0.1 ug/L <td< td=""><td>200527-108-1 20202377 200527-108-2 20202378 26/05/2020 09:43 598 Bushmere Road- MAR injection Bore 350 GPE068 26/05/2020 10:17 mg/L mg/L 598 Bushmere Road- MAR injection Bore 350 GPE068 598 Bushmere Road- MAR injection bore 75 m GPE067 mg/L mg/L 6.4 5.9 mg/L mg/L 0.0036 0.0046 mg/L mg/L 0.0036 0.0046 mg/L mg/L 0.037 0.45 mg/L mg/L 6.0 5.7 mg/L 6.0 5.7 mg/L 6.0 5.7 mg/L 0.0001 * <0.0001 *</td> c0.0001 * <0.0001 *</td<>	200527-108-1 20202377 200527-108-2 20202378 26/05/2020 09:43 598 Bushmere Road- MAR injection Bore 350 GPE068 26/05/2020 10:17 mg/L mg/L 598 Bushmere Road- MAR injection Bore 350 GPE068 598 Bushmere Road- MAR injection bore 75 m GPE067 mg/L mg/L 6.4 5.9 mg/L mg/L 0.0036 0.0046 mg/L mg/L 0.0036 0.0046 mg/L mg/L 0.037 0.45 mg/L mg/L 6.0 5.7 mg/L 6.0 5.7 mg/L 6.0 5.7 mg/L 0.0001 * <0.0001 *	200527.108-1 20202377 26/05/2020 09.43 598 Bushmere Road- MAR injection Bore 350 GPE068 200527.108-2 20202378 26/05/2020 10.17 598 Bushmere Road- MAR injection bore 75 m GPE067 200527.108-3 2005/2020 10.19 598 Bushmere Road- MAR Pilot bore GPE 065 "mgL 6.4 5.9 2.8 mgL 6.4 5.9 2.8 mgL 6.4 5.9 2.8 mgL 0.0036 0.0046 0.0005 mgL 92 77 64 mgL 11 9.0 6.7 mgL 0.37 0.45 0.054 mgL 6.0 5.7 2.6 mgL 52 48 25 mgL <0.001 *

Sample Details (continued)		WATERS	WATERS	WATERS	WATERS
Lab Sample ID:		200527-108-1	200527-108-2	200527-108-3	200527-108-5
Client Sample ID:		20202377	20202378	20202379	20202380
Sample Date/Time:		26/05/2020 09:43	26/05/2020 10:17	26/05/2020 10:49	26/05/2020 11:09
Description:		598 Bushmere Road-	598 Bushmere Road-	598 Bushmere Road	598 Bushmere Road
Description.		MAR injection Bore	MAR injection bore 75	MAR Pilot bore GPE	MAR Headworks
		350 GPE068	m GPE067	065	outlet
				000	ouliet
Organics					
Organonitrogen & Organophosphorus Pest	icides by Li	quid Chromatography-M	ass Spectrometry		
Fenpropimorph	µg/L	<0.1	<0.1	<0.1	<0.1
Fluazifop butyl	µg/L	<0.1	<0.1	<0.1	<0.1
Fluometuron	µg/L	<0.1	<0.1	<0.1	<0.1
Flusilazole	µg/L	<0.1	<0.1	<0.1	<0.1
Fluvalinate tau	µg/L	<2.0	<2.0	<2.0	<2.0
Furalaxyl	µg/L	<0.1	<0.1	<0.1	<0.1
Haloxyfop methyl	µg/L	<0.1	<0.1	<0.1	<0.1
Hexaconazole	µg/L	<0.1	<0.1	<0.1	<0.1
Hexazinone	μg/L	<0.1	<0.1	<0.1	<0.1
Imazapyr	μg/L	<0.1	<0.1	<0.1	<0.1
IPBC	μg/L	<0.1	<0.1	<0.1	<0.1
Kresoxim methyl	μg/L	<0.1	<0.1	<0.1	<0.1
Linuron	μg/L	<0.1	<0.1	<0.1	<0.1
Malathion	μg/L	<0.1	<0.1	<0.1	<0.1
Metalaxyl	μg/L	<0.1	<0.1	<0.1	<0.1
Metolachlor	μg/L	<0.1	<0.1	<0.1	<0.1
Metribuzin	μg/L	<0.1		<0.1	<0.1
	μg/L		< 0.1		
Metsulfuron	μg/L	< 0.05	< 0.05	< 0.05	< 0.05
Molinate		<0.1	<0.1	<0.1	<0.1
Myclobutanil	μg/L	<0.1	<0.1	<0.1	<0.1
Naled	μg/L	<1.0	<1.0	<1.0	<1.0
Norflurazon	μg/L	<0.1	<0.1	<0.1	<0.1
Oryzalin	μg/L	<4.0	<4.0	<4.0	<4.0
Oxadiazon	μg/L	<0.1	<0.1	<0.1	<0.1
Paclobutrazol	μg/L	<0.1	<0.1	<0.1	<0.1
Parathion Ethyl	μg/L	<1.0	<1.0	<1.0	<1.0
Pendimethalin	μg/L	<0.1	<0.1	<0.1	<0.1
Pirimicarb	µg/L	<0.1	<0.1	<0.1	<0.1
Pirimiphos methyl	μg/L	<0.1	<0.1	<0.1	<0.1
Prochloraz	µg/L	<0.1	<0.1	<0.1	<0.1
Prometryne	μg/L	<0.1	<0.1	<0.1	<0.1
Propachlor	μg/L	<0.1	<0.1	<0.1	<0.1
Propanil	μg/L	<0.1	<0.1	<0.1	<0.1
Propazine	μg/L	<0.1	<0.1	<0.1	<0.1
Propiconazole	μg/L	<0.1	<0.1	<0.1	<0.1
Pyriproxifen	μg/L	<0.1	<0.1	<0.1	<0.1
Quizalofop ethyl	μg/L	<0.1	<0.1	<0.1	<0.1
Simazine	µg/L	<0.1	<0.1	<0.1	<0.1
Simetryn	μg/L	<0.1	<0.1	<0.1	<0.1
Sulfentrazone	µg/L	<2.0	<2.0	<2.0	<2.0
ТСМТВ	µg/L	<0.1	<0.1	<0.1	<0.1
Tebuconazol	µg/L	<0.1	<0.1	<0.1	<0.1
Terbacil	µg/L	<0.1	<0.1	<0.1	<0.1
Terbufos	µg/L	<1.0	<1.0	<1.0	<1.0
Terbumeton	µg/L	<0.1	<0.1	<0.1	<0.1
Terbuthylazine desethyl	µg/L	<0.1	<0.1	<0.1	<0.1
Terbuthylazine	µg/L	<0.1	<0.1	<0.1	<0.1
Terbutryn	µg/L	<0.1	<0.1	<0.1	<0.1
Thiabendazole	μg/L	<0.1	<0.1	<0.1	<0.1
Thiobencarb	µg/L	<0.1	<0.1	<0.1	<0.1
Tolylfluanide	µg/L	<40	<40	<40	<40
Triazophos	µg/L	<0.1	<0.1	<0.1	<0.1

200527-108-2 200527-108-3 200527-108-5
20202378 20202379 20202380
3 26/05/2020 10:17 26/05/2020 10:49 26/05/2020 11:09
ad- 598 Bushmere Road- 598 Bushmere Road 598 Bushmere Road
re MAR injection bore 75 MAR Pilot bore GPE MAR Headworks m GPE067 065 outlet
ass Spectrometry
<20 <20 <20
<0.5 <0.5 <0.5
<20 <20 <20
<0.5 <0.5 <0.5
5 30 3
<0.5 <0.5 <0.5
<20 <20 <20
20 20 10
<20 <20 <20
<2 <2 <2
<0.5 <0.5 <0.5
<20 <20 <20
<20 <20 <20
<0.5 <0.5 <0.5
<0.5 <0.5 <0.5
<0.5 <0.5 <0.5
<100 <100 <100
<0.5 <0.5 <0.5
<0.5 <0.5 <0.5
<20 <20 <20
<1 <1 8
3 20 <2
<0.5 <0.5 <0.5
<0.5 <0.5 <0.5
<20 <20 <20
<0.5 <0.5 <0.5
0.7 <0.5 <0.5
<0.5 <0.5 <0.5
<0.5 <0.5 <0.5
210 <1.6 20
<1.6 <1.6 33
<1.6 <1.6 34
WATERS
200527-108-7
20202382
3 26/05/2020 11:32
ad Waipaoa River at
Infiltration Chamber
·
• • • • • • • • • • • • • • • • • • •
•
• • • • • • • • • • • • • • • • • • •

Sample Details (continued)		WATERS	WATERS	
Lab Sample ID:		200527-108-6	200527-108-7	
Client Sample ID:		20202381	20202382	
Sample Date/Time:		26/05/2020 12:08	26/05/2020 11:32	
Description:		599 Bushmere Road GPE069	Waipaoa River at Infiltration Chamber	
Chemistry Detailed				
on Balance (Anions/Cations) by Calculation				
Anion Total	meq/L	17 *	-	
Cation Total	meq/L	16 *	-	
meq/L Difference	meq/L	0.83 *	-	
Percent Difference	%	2.5 *	-	
Sum of Anions + Cations	meq/L	33 *	-	
Sample Parameters and Field Testing				
Laboratory Arrival Temperature	°C	10.4	10.4	
Laboratory Arrival Time		08:45:00 AM	08:45:00 AM	
General Testing				
Bicarbonate Alkalinity (as HCO3)	mg/L	600	_	
Carbonate Alkalinity (as CO3)	mg/L	<4.0	-	
	mg/L	<4.0 3.0	-	
Dissolved Ammoniacal Nitrogen (as N)	y/∟	3.0	-	
Hydroxide Alkalinity (as CaCO3)	mg/L	<4.0	-	
Total Alkalinity (as CaCO3)	mg/L	490	-	
Total Nitrogen (as N)	mg/L	490 3.5	-	
Total Suspended Solids	mg/L	5.5	- 350	
	FNU	- 69.7 *	72.1 *	
Turbidity (Infrared Light Source) Turbidity	NTU	60	72.1	
	1110	00	70	
Metals				
Dissolved Metals by ICP-MS—Trace (Received				
Arsenic (Dissolved)	mg/L	0.0048	-	
Cadmium (Dissolved)	mg/L	<0.0005	-	
Calcium (Dissolved)	mg/L	200	-	
Iron (Dissolved)	mg/L	0.58	-	
Magnesium (Dissolved)	mg/L	24	-	
Manganese (Dissolved)	mg/L	1.2	-	
Potassium (Dissolved)	mg/L	9.1	-	
Sodium (Dissolved)	mg/L	87	-	
Total Metals by ICP-MS—Trace (Default Diges	t)			
Arsenic (Total)	mg/L	0.013	-	
Calcium (Total)	mg/L	200	-	
Iron (Total)	mg/L	5.6	-	
Magnesium (Total)	mg/L	23	-	
Manganese (Total)	mg/L	1.2	-	
Potassium (Total)	mg/L	8.6	-	
Sodium (Total)	mg/L	83	-	
Organics				
Adhoc investigation				
Comments	m ~ //	Analysed by GCMS *	-	
Galaxolide	mg/L	<0.0001 *	-	
Tonalid	mg/L	<0.0001 *	-	
Estrogen (As Received) by Liquid Chromatog				
17 alpha-ethynylestradiol	µg/L	<0.02	-	
beta-Estradiol	µg/L	<0.02	-	
Estriol	µg/L	<0.004	-	
Estrone	µg/L	<0.004	-	
Ethinylestradiol	µg/L	<0.04	-	
Total Estrogen	µg/L	<0.04	-	
Glyphosate & AMPA by Liquid Chromatograp	hy-Mass S			
	µg/L			
AMPA	μα/μι	<0.04		
AMPA Glyphosate	μg/L	<0.04 <0.04	-	

Sample Details (continued)	WATERS	WATERS	
Lab Sample ID:	200527-108-6	200527-108-7	
Client Sample ID:	20202381	20202382	
Sample Date/Time:	26/05/2020 12:08	26/05/2020 11:32	
Description:	599 Bushmere Road	Waipaoa River at	
· · · · · · · · · · · · · · · · · · ·	GPE069	Infiltration Chamber	
Organics	-		
Organonitrogen & Organophosphorus Pesticides by L	1	ass Spectrometry	
Acetochlor µg/L	-	-	
Alachlor µg/L	<0.1	-	
Atrazine desethyl µg/L Atrazine desisopropyl µg/L	<0.1	-	
Atrazine desisopropyl 4g/L Atrazine 4g/L	<0.1 <0.1	-	
Azaconazole µg/L	<0.1	-	
Azinphos methyl µg/L	<0.1		
Benalaxyl µg/L	<0.1	-	
Bitertanol µg/L	<0.1	-	
Bromacil µg/L	<0.1	-	
Butachlor µg/L	<0.1	-	
Carbaryl µg/L	<0.1	-	
Carbofuran µg/L	<0.1	-	
Chlorfluazuron µg/L	<0.4	-	
Chlorpyrifos methyl µg/L	<0.4	-	
Chlorpyrifos µg/L	<0.1	-	
Chlortoluron 49/L	<0.1	-	
Cyanazine µg/L	<0.1	-	
Diazinon µg/L Dichlofluanid µg/L	<0.1	-	
Dichlorvos µg/L	<40 <0.1	-	
Difenoconazole	<0.1	-	
Dimethoate µg/L	<0.1	-	
Diphenylamine µg/L	<2.0	-	
Diuron µg/L	<0.1	-	
Fenpropimorph µg/L	<0.1	-	
Fluazifop butyl µg/L	<0.1	-	
Fluometuron µg/L	<0.1	-	
Flusilazole µg/L	<0.1	-	
Fluvalinate tau µg/L		-	
Furalaxyl µg/L	<0.1	-	
Haloxyfop methyl µg/L	<0.1	-	
Hexaconazole µg/L	<0.1	-	
Hexazinone µg/L Imazapyr µg/L	<0.1 <0.1	-	
Imazapyr 4g/L IPBC 4g/L	<0.1	-	
Kresoxim methyl µg/L	<0.1	-	
Linuron µg/L	<0.1	-	
Malathion µg/L	<0.1	-	
Metalaxyl µg/L	<0.1	-	
Metolachlor µg/L	<0.1	-	
Metribuzin µg/L	<0.1	-	
Metsulfuron µg/L	<0.05	-	
Molinate µg/L	<0.1	-	
Myclobutanil µg/L	<0.1	-	
Naled µg/L	<1.0	-	
Norflurazon µg/L	<0.1	-	
Oryzalin µg/L	<4.0	-	
Oxadiazon µg/L	<0.1	-	
Paclobutrazol µg/L Parathion Ethyl µg/L	<0.1 <1.0	-	
Parathion Ethyl µg/L Pendimethalin µg/L	<1.0	-	
Pendimetnalin Pg/L Pirimicarb µg/L	<0.1	-	
Pirimiphos methyl 49/L	<0.1	-	
Prochloraz µg/L	<0.1	-	

Sample Details (continued)		WATERS	WATERS	
Lab Sample ID:		200527-108-6	200527-108-7	
Client Sample ID:		20202381	20202382	
Sample Date/Time:		26/05/2020 12:08	26/05/2020 11:32	
Description:		599 Bushmere Road	Waipaoa River at	
		GPE069	Infiltration Chamber	
Organics				
Organonitrogen & Organophosphorus P	esticides by Li	nuid Chromatography-Ma	ass Spectrometry	
Prometryne	µg/L	< 0.1	-	
Propachlor	μg/L	<0.1	_	
Propanil	μg/L	<0.1	-	
Propazine	μg/L	<0.1	-	
Propiconazole	µg/L	<0.1	-	
Pyriproxifen	µg/L	<0.1	-	
Quizalofop ethyl	µg/L	<0.1	-	
Simazine	µg/L	<0.1	-	
Simetryn	µg/L	<0.1	-	
Sulfentrazone	µg/L	<2.0	-	
ТСМТВ	µg/L	<0.1	-	
Tebuconazol	µg/L	<0.1	-	
Terbacil	µg/L	<0.1	-	
Terbufos	μg/L	<1.0	-	
Terbumeton	μg/L	<0.1	-	
Terbuthylazine desethyl	μg/L μg/L	<0.1	-	
Terbuthylazine		<0.1	-	
Terbutryn Thiabendazole	μg/L μg/L	<0.1 <0.1	-	
Thiobencarb	μg/L	<0.1	-	
Tolylfluanide	μg/L	<40	-	
Triazophos	μg/L	<0.1		
Pharmaceutical and Personal Care Produ				
Acesulfame	ng/L	<20		
Atenolol	ng/L	<0.5	-	
Benzophenone	ng/L	<20	-	
Bupropion	ng/L	<0.5	-	
Caffeine	ng/L	20	-	
Carbamazepine	ng/L	<0.5	-	
Ciprofloxacin	ng/L	<20	-	
Cotinine	ng/L	20	-	
DEET	ng/L	<20	-	
Diclofenac	ng/L	<2	-	
Diltiazem	ng/L	<0.5	-	
Diphenhydramine	ng/L	<20	-	
Doxycycline	ng/L	<20	-	
Fluoxetine	ng/L	<0.5	-	
Gabapentin	ng/L ng/L	<0.5	-	
Gemfibrozil	ng/L ng/L	<0.5	-	
Ibuprofen Lamotrigine	ng/L	<100 <0.5	-	
Lamotrigine Metoprolol	ng/∟	<0.5	-	
Naproxen	ng/L	<0.5	-	
Norcotinine	ng/L	<1	-	
Paracetamol	ng/L	10	-	
Sucralose	ng/L	<0.5	-	
Sulfamethoxazole	ng/L	<0.5	-	
Triclocarban	ng/L	<20	-	
Triclosan	ng/L	<0.5	-	
Trimethoprim	ng/L	<0.5	-	
Varenicline	ng/L	<0.5	-	
Venlafaxine	ng/L	<0.5	-	
Microbiology				
Enterococci by Membrane Filtration				
Enterococci	cfu/100 mL	<1.6	-	

Sample Details (continued)	WATERS	WATERS	
Lab Sample ID:	200527-108-6	200527-108-7	
Client Sample ID:	20202381	20202382	
Sample Date/Time:	26/05/2020 12:08	26/05/2020 11:32	
Description:	599 Bushmere Road	Waipaoa River at	
	GPE069	Infiltration Chamber	
Microbiology			
Escherichia coli by Membrane Filtration			
Escherichia coli cfu/100 ml	<1.6	-	
Faecal coliforms by Membrane Filtration			
Faecal coliforms cfu/100 ml	<1.6	-	
Dogulto morteo	with * are not approxited to In	tornational Approditation New	Zaaland

Results marked with * are not accredited to International Accreditation New Zealand

Where samples have been supplied by the client they are tested as received. A dash indicates no test performed.

Reference Methods The sample(s) referred to in this report were analysed by the following method(s)

Analyte	Method Reference	MDL	Samples	Location
Chemistry Detailed				
Anions				
Bromide	APHA (online edition) 4110 B	0.005 mg/L	1, 2, 3, 5, 6	Auckland
Chloride	APHA (online edition) 4110 B	0.02 mg/L	1, 2, 3, 5, 6	Auckland
Nitrate (as N)	APHA (online edition) 4110 B	0.002 mg/L	1, 2, 3, 5, 6	Auckland
Nitrite (as N)	APHA (online edition) 4110 B	0.002 mg/L	1, 2, 3, 5, 6	Auckland
Sulphate	APHA (online edition) 4110 B	0.02 mg/L	1, 2, 3, 5, 6	Auckland
Ion Balance (Anions/Cations) by Calculation				
Anion Total	APHA (online edition) 1030 E	meq/L	1, 2, 3, 5, 6	Auckland
Cation Total	APHA (online edition) 1030 E	meq/L	1, 2, 3, 5, 6	Auckland
meq/L Difference	APHA (online edition) 1030 E	meq/L	1, 2, 3, 5, 6	Auckland
Percent Difference	APHA (online edition) 1030 E		1, 2, 3, 5, 6	Auckland
Sum of Anions + Cations	APHA (online edition) 1030 E		1, 2, 3, 5, 6	Auckland
Sample Parameters and Field Testing				
Laboratory Arrival Temperature	APHA (online edition) 2550 B		All	Auckland
Laboratory Arrival Time	APHA (online edition) 2550 B		All	Auckland
General Testing				
Bicarbonate Alkalinity (as HCO3) by Titration	APHA (online edition) 2320 B	1 mg/L	1, 2, 3, 5, 6	Auckland
Carbonate Alkalinity (as CO3) by Titration	APHA (online edition) 2320 B	1 mg/L	1, 2, 3, 5, 6	Auckland
Dissolved Ammoniacal Nitrogen (as N) by Colorimetry/	HMSO (1981) ISBN 0117516139	0.005 mg/L	1, 2, 3, 5, 6	Auckland
Discrete Analyser		0		
Hydroxide Alkalinity (as CaCO3) by Titration	APHA (online edition) 2320 B	1 mg/L	1, 2, 3, 5, 6	Auckland
Total Alkalinity (as CaCO3) by Titration	APHA (online edition) 2320 B	1 mg/L	1, 2, 3, 5, 6	Auckland
Total Nitrogen (as N) by Persulphate Digestion and Flow Analysis	APHA (online edition) 4500-P J (modified), 4500-NO3 I	0.010 mg/L	1, 2, 3, 5, 6	Auckland
Total Suspended Solids by Gravimetry	APHA (online edition) 2540 D / 2540 E	0.2 mg/L	7	Auckland
Turbidity (Infrared Light Source) by Nephelometry	ISO 7027-1:2016	0.05 FNU	All	Auckland
Turbidity by Nephelometry	APHA (online edition) 2130 B (modified)	0.05 NTU	All	Auckland
Metals				
Dissolved Metals by ICP-MS—Trace (Received Filtered)				
Arsenic (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.00010 mg/L	1, 2, 3, 5, 6	Auckland
Cadmium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.00005 mg/L	1, 2, 3, 5, 6	Auckland
Calcium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.010 mg/L	1, 2, 3, 5, 6	Auckland
Iron (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.002 mg/L	1, 2, 3, 5, 6	Auckland
Magnesium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.001 mg/L	1, 2, 3, 5, 6	Auckland
Manganese (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.0005 mg/L	1, 2, 3, 5, 6	Auckland
Potassium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.02 mg/L	1, 2, 3, 5, 6	Auckland
Sodium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.1 mg/L	1, 2, 3, 5, 6	Auckland
Total Metals by ICP-MS—Trace (Default Digest)				
Arsenic (Total)	APHA (online edition) 3125 B by ICPMS	0.00010 mg/L	1, 2, 3, 5, 6	Auckland
Calcium (Total)	APHA (online edition) 3125 B by ICPMS	0.010 mg/L	1, 2, 3, 5, 6	Auckland
Iron (Total)	APHA (online edition) 3125 B by ICPMS	0.002 mg/L	1, 2, 3, 5, 6	Auckland
Magnesium (Total)	APHA (online edition) 3125 B by ICPMS	0.001 mg/L	1, 2, 3, 5, 6	Auckland

Metals				
Total Metals by ICP-MS—Trace (Default Dige	ust)			
Manganese (Total)	APHA (online edition) 3125 B by ICPMS	0.0005 mg/L	1, 2, 3, 5, 6	Auckland
Potassium (Total)	APHA (online edition) 3125 B by ICPMS	0.05 mg/L	1, 2, 3, 5, 6	Auckland
Sodium (Total)	APHA (online edition) 3125 B by ICPMS	0.1 mg/L	1, 2, 3, 5, 6	Auckland
Organics	· · ·	-		
Adhoc investigation				
Comments	As specified above		1, 2, 3, 5, 6	Auckland
Estrogen (As Received) by Liquid Chromato	•			
17 alpha-ethynylestradiol	SPE cleanup, LC MS/MS	0.02 µg/L	1, 2, 3, 5, 6	Auckland
beta-Estradiol	SPE cleanup, LC MS/MS	0.02 μg/L	1, 2, 3, 5, 6	Auckland
Estriol	SPE cleanup, LC MS/MS	0.004 μg/L	1, 2, 3, 5, 6	Auckland
Estrone	SPE cleanup, LC MS/MS	0.004 μg/L	1, 2, 3, 5, 6	Auckland
Ethinylestradiol	SPE cleanup, LC MS/MS	0.04 μg/L	1, 2, 3, 5, 6	Auckland
Total Estrogen	SPE cleanup, LC MS/MS	0.004 μg/L	1, 2, 3, 5, 6	Auckland
Glyphosate & AMPA by Liquid Chromatogra	•	0.001 µg, 1	.,_,,,,,,	
AMPA	In-house by LC-MS	0.04 µg/L	1, 2, 3, 5, 6	Auckland
Glyphosate	In-house by LC-MS	0.04 μg/L	1, 2, 3, 5, 6	Auckland
	•	0.0∓ µg/∟	1, 2, 0, 0, 0	, aonaria
Drganonitrogen & Organophosphorus Pesti Acetochlor	cides by Liquid Chromatography-Mass Spectrometry	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Alachlor	In-house by LC-MS		1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Alachior Atrazine desethyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Atrazine desetnyi Atrazine desisopropyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Atrazine	In-house by LC-MS	0.1 μg/L 0.1 μg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Arazonazole	In-house by LC-MS			Auckland
	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	
Azinphos methyl Benalaxyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland Auckland
Bitertanol	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Bromacil	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Butachlor	In-house by LC-MS	0.1 μg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Carbaryl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Carbofuran	In-house by LC-MS	0.1 µg/L		
Chlorfluazuron	In-house by LC-MS	0.1 μg/L	1, 2, 3, 5, 6	Auckland Auckland
	In-house by LC-MS	0.4 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	
Chlorpyrifos methyl	In-house by LC-MS	0.4 μg/L	1, 2, 3, 5, 6	Auckland Auckland
Chlorpyrifos	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	
	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Diazinon	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Dichlofluanid	In-house by LC-MS	40 μg/L		Auckland
Dichlorvos Difenoconazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Difenoconazoie Dimethoate	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Jimetnoate Diphenylamine	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland Auckland
Dipnenyiamine Diuron	In-house by LC-MS	2 µg/L		Auckland
	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1 2 3 5 6	Auckland
	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	
Fluazifop butyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Fluometuron	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Flusilazole Fluvalinate tau	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland Auckland
-iuvainate tau Furalaxyl	In-house by LC-MS	2 µg/L		Auckland
•	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Haloxyfop methyl Hexaconazole	In-house by LC-MS	0.1 µg/L		Auckland
	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	
lexazinone	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
mazapyr PBC	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Kresoxim methyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Malathion	In-house by LC-MS	0.1 μg/L	1, 2, 3, 5, 6	Auckland
Metalaxyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Metolachlor	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland

Organics				
Organonitrogen & Organophosphorus Pesticides by Liqu	id Chromatography-Mass Spectrometry			
Metribuzin	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Metsulfuron	In-house by LC-MS	0.05 µg/L	1, 2, 3, 5, 6	Auckland
Molinate	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Myclobutanil	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Naled	In-house by LC-MS	1 µg/L	1, 2, 3, 5, 6	Auckland
Norflurazon	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Oryzalin	In-house by LC-MS	4 µg/L	1, 2, 3, 5, 6	Auckland
Oxadiazon	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Paclobutrazol	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Parathion Ethyl	In-house by LC-MS	1 µg/L	1, 2, 3, 5, 6	Auckland
Pendimethalin	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Pirimicarb	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Pirimiphos methyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Prochloraz	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Prometryne	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Propachlor	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Propanil	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Propazine	In-house by LC-MS	0.1 μg/L	1, 2, 3, 5, 6	Auckland
Propiconazole	In-house by LC-MS	0.1 μg/L	1, 2, 3, 5, 6	Auckland
Pyriproxifen	In-house by LC-MS	0.1 μg/L	1, 2, 3, 5, 6	Auckland
Quizalofop ethyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Simazine	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Simetryn	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Sulfentrazone	In-house by LC-MS	2 µg/L	1, 2, 3, 5, 6	Auckland
ТСМТВ	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Tebuconazol	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Terbacil	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Terbufos	In-house by LC-MS	1 µg/L	1, 2, 3, 5, 6	Auckland
Terbumeton	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Terbuthylazine desethyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Terbuthylazine	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Terbutryn	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Thiabendazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Thiobencarb	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Tolylfluanide	In-house by LC-MS	40 µg/L	1, 2, 3, 5, 6	Auckland
Triazophos	In-house by LC-MS	0.1 µg/L	1, 2, 3, 5, 6	Auckland
Pharmaceutical and Personal Care Products by Liquid Ch	romatography-Mass Spectrometry			
Acesulfame	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 5, 6	Auckland
Atenolol	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6	Auckland
Benzophenone	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 5, 6	Auckland
Bupropion	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6	Auckland
Caffeine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6	Auckland
Carbamazepine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6	Auckland
Ciprofloxacin	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 5, 6	Auckland
Cotinine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6	Auckland
DEET	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 5, 6	Auckland
Diclofenac	Instrumental Techniques by LC/MS 2.70	2 ng/L	1, 2, 3, 5, 6	Auckland
Diltiazem	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6	Auckland
Diphenhydramine	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Doxycycline	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Fluoxetine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Gabapentin	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Gemfibrozil	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Ibuprofen	Instrumental Techniques by LC/MS 2.70	100 ng/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
Lamotrigine Metoprolol	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6 1 2 3 5 6	Auckland
	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6 1 2 3 5 6	Auckland
Naproxen Norcotinine	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland Auckland
Paracetamol	Instrumental Techniques by LC/MS 2.70	1 ng/L 2 ng/l	1, 2, 3, 5, 6 1, 2, 3, 5, 6	Auckland
	Instrumental Techniques by LC/MS 2.70	2 ng/L	1, 2, 3, 3, 0	

Organics				
Pharmaceutical and Personal Care Products by L	iquid Chromatography-Mass Spectrometry			
Sucralose	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6	Auckland
Sulfamethoxazole	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6	Auckland
Triclocarban	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 5, 6	Auckland
Triclosan	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6	Auckland
Trimethoprim	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6	Auckland
Varenicline	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6	Auckland
Venlafaxine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 5, 6	Auckland
Microbiology				
Enterococci by Membrane Filtration				
Enterococci	APHA (online edition) 9230 C	2 cfu/100 mL	1, 2, 3, 5, 6	Auckland
Escherichia coli by Membrane Filtration				
Escherichia coli	USEPA Method 1603	2 cfu/100 mL	1, 2, 3, 5, 6	Auckland
Faecal coliforms by Membrane Filtration				
Faecal coliforms	APHA (online edition) 9222 D	2 cfu/100 mL	1, 2, 3, 5, 6	Auckland
Preparations				
Digest for Total Metals in Liquids	In House (4:1 Nitric:Hydrochloric Acid, 95°C 2 hours)		1, 2, 3, 5, 6	Auckland
Membrane Filtration (0.45 μm)	APHA (online edition) 4500-P B (preliminary filtration)		1, 2, 3, 5, 6	Auckland

Samples, with suitable preservation and stability of analytes, will be held by the laboratory for a period of two weeks after results have been reported, unless otherwise advised by the submitter.

Watercare Laboratory Services is a division of Watercare Services Limited .

This report may not be reproduced, except in full, without the written authority of the Operations Manager.

Wellington

Petone

Building 25, 480 Jackson Street,

Lower Hutt, 5012

Homfare

Peter Boniface KTP Signatory

T: (04) 595 6665

Queenstown

74 Glenda Drive, PO Box 2614

Wakatipu

Queenstown,

Invercargill, 9840 T: (03) 214 4040 F: (03) 214 4041

Invercargill

142 Esk Street

PO Box 747

T: (03) 409 0559

Watercare Laboratory Services

Watercare Services Limited

52 Aintree Ave, Auckland Airport, Auckland, 2150 PO Box 107028, Auckland, 2150 T: (09) 539 7600 F: (09) 539 7601 clientsupport@water.co.nz www.watercarelabs.co.nz

Certificate of Analysis Laboratory Reference:200625-154

Attention:	Hilltop Sampler	Final Report:	371073-0
Client:	GISBORNE DISTRICT COUNCIL	Report Issue Date:	10-Jul-2020
Address:	PO Box 747, Gisborne, 4040	Received Date:	25-Jun-2020
Client Reference:	Managed Aquifer Recharge	Sampled By:	Jaquetta Udy
Purchase Order:	3700110012201	Quote Reference :	5880

	200625 454 4			
	200625-154-1	200625-154-2	200625-154-3	200625-154-6
	20202699	20202700	20202701	20202702
	24/06/2020 09:14	24/06/2020 09:55	24/06/2020 10:30	24/06/2020 11:06
	598 Bushmere Road-	598 Bushmere Road-	598 Bushmere Road	599 Bushmere Road
	MAR injection Bore	MAR injection bore 75	MAR Pilot bore GPE	GPE069
	350 GPE068	m GPE067	065	
mg/L	0.132	0.0667	0.029	0.52
mg/L	29.8	16.2	9.51	126
mg/L	0.002	0.0021	<0.002	0.0027
mg/L	0.0035	0.0027	< 0.002	0.0044
mg/L	55.3	62.0	94.5	0.61
meq/L	8.4 *	7.3 *	5.3 *	15 *
meq/L	8.7 *	7.4 *	5.3 *	14 *
meq/L	0.34 *	0.90e-1 *	0.20e-1 *	0.75 *
%		0.61 *	0.19 *	2.6 *
meq/L				29 *
°C	12.3	12.3	12.3	12.3
	01:42:00 PM	01:42:00 PM	01:42:00 PM	01:42:00 PM
mg/L	390	340	190	700
mg/L	<4.0	<4.0	<2.0	<4.0
mg/L	0.98	1.4	0.017	2.8
mg/L	<4.0	<4.0	<2.0	<4.0
mg/L	320	280	150	580
mg/L	1.1	1.6	0.088	3.0
FNU	28.9 *	14.6 *	0.77 *	67.7 *
NTU	26	12	0.60	60
I Filtered)			
mg/L	0.0037	0.0042	0.00059	0.013
mg/L	<0.00005	<0.00005	<0.00005	<0.00005
mg/L	100	82	71	170
mg/L	2.7	0.98	0.012	5.8
mg/L	10	8.5	6.7	19
mg/L	0.37	0.43	0.022	1.2
mg/L	6.1	5.6	2.5	8.1
mg/L	59	54	26	81
:)				
mg/L	0.0038	0.0043	0.00057	0.013
mg/L				180
	mg/L mg/L mg/L mg/L mg/L meq/L meq/L % meq/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg	598 Bushmere Road- MAR injection Bore 350 GPE068 mg/L 0.132 mg/L 0.132 mg/L 29.8 mg/L 0.002 mg/L 0.0035 mg/L 0.0035 mg/L 0.0035 mg/L 0.035 mg/L 0.034 meq/L 8.4 * meq/L 8.7 * meq/L 17 * meq/L 17 * mg/L 0.142:00 PM * 0.98 mg/L 390 mg/L 390 mg/L 4.0 mg/L 0.98 mg/L 320 mg/L 26 mg/L 1.1 FNU 28.9 * NTU 26 mg/L 100 mg/L 100 mg/L 10 mg/L 59 mg/L 59	598 Bushmere Road- MAR injection Bore 350 GPE068 598 Bushmere Road- MAR injection bore 75 m GPE067 mg/L 0.132 0.0667 mg/L 29.8 16.2 mg/L 0.002 0.0021 mg/L 0.0035 0.0027 mg/L 0.035 0.0027 mg/L 8.4 * 7.3 * meq/L 8.7 * 7.4 * meq/L 0.34 * 0.90e-1 * % 2.0 * 0.61 * meq/L 17 * 15 * *C 12.3 12.3 01:42:00 PM 01:42:00 PM mg/L 390 340 mg/L 390 340 mg/L 320 280 mg/L 320 280 mg/L 1.1 1.6 NTU 26 12 12 12 mg/L 0.0037 0.0042 mg/L 0.037 0.43 mg/L 0.37 0.43	598 Bushmere Road- MAR injection Bore 350 GPE068 598 Bushmere Road- MAR injection bore 75 m GPE067 598 Bushmere Road- MAR Pilot bore GPE 065 mg/L 0.0132 0.0667 0.029 mg/L 0.0035 0.0021 <0.002

Sample Details (continued)		WATERS	WATERS	WATERS	WATERS
Lab Sample ID:		200625-154-1	200625-154-2	200625-154-3	200625-154-6
Client Sample ID:		20202699	20202700	20202701	20202702
Sample Date/Time:		24/06/2020 09:14	24/06/2020 09:55	24/06/2020 10:30	24/06/2020 11:06
Description:		598 Bushmere Road-	598 Bushmere Road-	598 Bushmere Road	599 Bushmere Road
		MAR injection Bore 350 GPE068	MAR injection bore 75 m GPE067	MAR Pilot bore GPE 065	GPE069
Metals					
Total Metals by ICP-MS—Trace (Default Dig					
Iron (Total)	mg/L	2.7	1.1	0.023	5.8
Magnesium (Total)	mg/L	11	9.0	7.3	21
Manganese (Total)	mg/L	0.4	0.45	0.026	1.2
Potassium (Total)	mg/L	6.4	5.9	2.7	9.2
Sodium (Total)	mg/L	56	52	27	76
Organics					
Adhoc investigation					
Comments		Analysed by GC/MS	Analysed by GC/MS *	Analysed by GC/MS *	Analysed by GC/MS
Galaxolide	mg/L	<0.0001 *	<0.0001 *	<0.0001 *	<0.0001 *
Tonalid	mg/L	<0.0001 *	<0.0001 *	<0.0001 *	<0.0001 *
Estrogen (As Received) by Liquid Chromat	ography-Mas	ss Spectrometry			
17 alpha-ethynylestradiol	µg/L	<0.02	<0.02	<0.02	<0.02
beta-Estradiol	µg/L	<0.02	<0.02	<0.02	<0.02
Estriol	µg/L	<0.004	<0.004	<0.004	<0.004
Estrone	µg/L	<0.004	<0.004	<0.004	<0.004
Ethinylestradiol	µg/L	<0.04	<0.04	<0.04	<0.04
Total Estrogen	µg/L	<0.04	<0.04	<0.04	<0.04
Glyphosate & AMPA by Liquid Chromatogr		pectrometry			
AMPA	µg/L	<0.04	<0.04	<0.04	<0.04
Glyphosate	µg/L	<0.04	<0.04	<0.04	<0.04
Organonitrogen & Organophosphorus Pes	ticides by Lie	quid Chromatography-M	ass Spectrometry		
Acetochlor	µg/L	<0.1	<0.1	<0.1	<0.1
Alachlor	µg/L	<0.1	<0.1	<0.1	<0.1
Atrazine desethyl	µg/L	<0.1	<0.1	<0.1	<0.1
Atrazine desisopropyl	µg/L	<0.1	<0.1	<0.1	<0.1
Atrazine	µg/L	<0.1	<0.1	<0.1	<0.1
Azaconazole	μg/L μg/L	<0.1	<0.1	<0.1	<0.1
Azinphos methyl Benalaxyl	μg/L	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Bitertanol	μg/L	<0.1	<0.1	<0.1	<0.1
Bromacil	μg/L	<0.1	<0.1	<0.1	<0.1
Butachlor	μg/L	<0.1	<0.1	<0.1	<0.1
Carbaryl	µg/L	<0.1	<0.1	<0.1	<0.1
Carbofuran	μg/L	<0.1	<0.1	<0.1	<0.1
Chlorfluazuron	µg/L	<0.4	<0.4	<0.4	<0.4
Chlorpyrifos methyl	µg/L	<0.4	<0.4	<0.4	<0.4
Chlorpyrifos	µg/L	<0.1	<0.1	<0.1	<0.1
Chlortoluron	µg/L	<0.1	<0.1	<0.1	<0.1
Cyanazine	µg/L	<0.1	<0.1	<0.1	<0.1
Diazinon	µg/L	<0.1	<0.1	<0.1	<0.1
Dichlofluanid	µg/L	<40	<40	<40	<40
Dichlorvos	µg/L	<0.1	<0.1	<0.1	<0.1
Difenoconazole	µg/L	<0.1	<0.1	<0.1	<0.1
Dimethoate	µg/L	<0.1	<0.1	<0.1	<0.1
Diphenylamine	µg/L	<2.0	<2.0	<2.0	<2.0
Diuron	μg/L μg/L	<0.1	<0.1	<0.1	<0.1
Fenpropimorph	μg/L μg/L	<0.1	<0.1	<0.1	<0.1
Fluazifop butyl	μg/L μg/L	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1
Fluometuron Flusilazole	μg/L	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1
	P9' -	~ U.1	NU. 1		
	ua/L	<20	<20	<20	<20
Fluvalinate tau Furalaxyl	μg/L μg/L	<2.0 <0.1	<2.0 <0.1	<2.0 <0.1	<2.0 <0.1

Sample Details (continued)	WATERS	WATERS	WATERS	WATERS
Lab Sample ID:	200625-154-1	200625-154-2	200625-154-3	200625-154-6
Client Sample ID:	20202699	20202700	20202701	20202702
Sample Date/Time:	24/06/2020 09:14	24/06/2020 09:55	24/06/2020 10:30	24/06/2020 11:06
Description:	598 Bushmere Road-	598 Bushmere Road-	598 Bushmere Road	599 Bushmere Road
	MAR injection Bore 350 GPE068	MAR injection bore 75 m GPE067	MAR Pilot bore GPE 065	GPE069
Organics	1			
Organonitrogen & Organophosphorus Pesticides by	Liquid Chromatography-N	lass Spectrometry		
Hexaconazole ^{µg}	•	<0.1	<0.1	<0.1
Hexazinone ^{µg}	L <0.1	<0.1	<0.1	<0.1
Imazapyr µg		<0.1	<0.1	<0.1
IPBC Pa		<0.1	<0.1	<0.1
Kresoxim methyl ^{µg}		<0.1	<0.1	<0.1
Linuron ^{µg}	•	<0.1	<0.1	<0.1
Malathion 49		<0.1	<0.1	<0.1
Metalaxyl 49 Metolachlor 49		<0.1	<0.1	<0.1
Metolachlor 49 Metribuzin 49	***	<0.1	<0.1	<0.1
Metribuzin P9 Metsulfuron P9	•	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05
Molinate 49		<0.05	<0.05	<0.05
Myclobutanil 49		<0.1	<0.1	<0.1
Naled 49		<1.0	<1.0	<1.0
Norflurazon 49		<0.1	<0.1	<0.1
Oryzalin 49	***	<4.0	<4.0	<4.0
Oxadiazon Pg		<0.1	<0.1	<0.1
Paclobutrazol ^{µg}		<0.1	<0.1	<0.1
Parathion Ethyl ^{µg}		<1.0	<1.0	<1.0
Pendimethalin ^{µg}	L <0.1	<0.1	<0.1	<0.1
Pirimicarb ^{µg}	L <0.1	<0.1	<0.1	<0.1
Pirimiphos methyl ^{µg}		<0.1	<0.1	<0.1
Prochloraz ^{µg}		<0.1	<0.1	<0.1
Prometryne ^{µg}		<0.1	<0.1	<0.1
Propachlor 49	•	<0.1	<0.1	<0.1
Propanil ^{µg}		<0.1	<0.1	<0.1
Propazine 49		<0.1	<0.1	<0.1
Propiconazole 49	•	<0.1	<0.1	<0.1
Pyriproxifen 49 Quizalofop ethyl 49	-0.1	<0.1	<0.1	<0.1
Quizalofop ethyl 49 Simazine 49		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Simazine Pg	***	<0.1	<0.1	<0.1
Sulfentrazone 49		<0.1	<0.1	<0.1
TCMTB 49		<0.1	<0.1	<0.1
Tebuconazol 49		<0.1	<0.1	<0.1
Terbacil ^{µg}		<0.1	<0.1	<0.1
Terbufos ^{µg}		<1.0	<1.0	<1.0
Terbumeton ^{µg}		<0.1	<0.1	<0.1
Terbuthylazine desethyl		<0.1	<0.1	<0.1
Terbuthylazine ^{µg}	L <0.1	<0.1	<0.1	<0.1
Terbutryn ^{µg}	***	<0.1	<0.1	<0.1
Thiabendazole ^{µg}		<0.1	<0.1	<0.1
Thiobencarb ^{µg}	•	<0.1	<0.1	<0.1
Tolylfluanide ^{µg}		<40	<40	<40
Triazophos 49	L <0.1	<0.1	<0.1	<0.1
Pharmaceutical and Personal Care Products by Liqu	1	Spectrometry		
Acesulfame ng		<20	<20	<20
Atenolol ng	0.0	<0.5	<0.5	<0.5
Benzophenone ng		<20	<20	<20
Bupropion ng	0.0	<0.5	<0.5	<0.5
Caffeine ng	°	3	5	2
Carbamazepine ng	0.0	<0.5	1	<0.5
Ciprofloxacin ng	•	<20	<20	<20
Cotinine ng		5	3	2
DEET ng	L <20	<20	<20	<20

Sample Details (continued)		WATERS	WATERS	WATERS	WATERS
Lab Sample ID:		200625-154-1	200625-154-2	200625-154-3	200625-154-6
Client Sample ID:		20202699	20202700	20202701	20202702
Sample Date/Time:		24/06/2020 09:14	24/06/2020 09:55	24/06/2020 10:30	24/06/2020 11:06
Description:		598 Bushmere Road-	598 Bushmere Road-	598 Bushmere Road	599 Bushmere Road
		MAR injection Bore 350 GPE068	MAR injection bore 75 m GPE067	MAR Pilot bore GPE 065	GPE069
Organics					
Pharmaceutical and Personal Care Product	s by Liquid	Chromatography-Mass S	Spectrometry		
Diclofenac	ng/L	<2	<2	<2	<2
Diltiazem	ng/L	<0.5	<0.5	<0.5	<0.5
Diphenhydramine	ng/L	<20	<20	<20	<20
Doxycycline	ng/L	<20	<20	<20	<20
Fluoxetine	ng/L	<0.5	<0.5	<0.5	<0.5
Gabapentin	ng/L	<0.5	<0.5	<0.5	<0.5
Gemfibrozil	ng/L	<0.5	<0.5	<0.5	<0.5
Ibuprofen	ng/L	<100	<100	<100	<100
Lamotrigine	ng/L	0.9	3	40	<0.5
Metoprolol	ng/L	<0.5	<0.5	0.9	<0.5
Naproxen	ng/L	<20	<20	<20	<20
Norcotinine	ng/L	6	2	5	<1
Paracetamol	ng/L	<2	6	10	<2
Sucralose	ng/L	<0.5	<0.5	<0.5	<0.5
Sulfamethoxazole	ng/L	<0.5	<0.5	2	<0.5
Triclocarban	ng/L	<20	<20	<20	<20
Triclosan	ng/L	<0.5	<0.5	<0.5	<0.5
Trimethoprim	ng/L	<0.5	<0.5	<0.5	<0.5
Varenicline	ng/L	<0.5	<0.5	<0.5	<0.5
Venlafaxine	ng/L	<0.5	<0.5	<0.5	<0.5
Microbiology					
Enterococci by Membrane Filtration					
Enterococci	cfu/100 mL	<1.6	<1.6	<1.6	<1.6
Escherichia coli by Membrane Filtration	1				
Escherichia coli	cfu/100 mL	<1.6	<1.6	<1.6	<1.6
		NI.0	~1.0	<1.0	<1.0
Faecal coliforms by Membrane Filtration	cfu/100 mL		4.0	4.0	4.0
Faecal coliforms		<1.6	<1.6	<1.6	<1.6
Sample Details	·	WATERS			
Lab Sample ID:		200625-154-7			
Client Sample ID:		20202703			
Sample Date/Time		24/06/2020 11:30			
Description:		Waipaoa River at			
		Infiltration Chamber			
Sample Parameters and Field Testing					
Laboratory Arrival Temperature	°C	12.3			
Laboratory Arrival Time		01:42:00 PM			
General Testing					
Total Suspended Solids	mg/L	838			
Turbidity (Infrared Light Source)	FNU	880 *			
Turbidity	NTU	650			

Results marked with * are not accredited to International Accreditation New Zealand

Where samples have been supplied by the client they are tested as received. A dash indicates no test performed.

Analyst's Notes

The Nitrite (as N) analysis for sample 598 Bushmere Road-MAR injection Bore 350 GPE068 commenced beyond the holding time of 2 Days

The Nitrate (as N) analysis for sample 598 Bushmere Road-MAR injection Bore 350 GPE068 commenced beyond the holding time of 2 Days

The Nitrite (as N) analysis for sample 598 Bushmere Road-MAR injection bore 75m GPE067

The Nitrate (as N) analysis for sample 598 Bushmere Road-MAR injection bore 75m GPE067

The Nitrite (as N) analysis for sample 598 Bushmere Road MAR Pilot bore GPE065 commenced beyond the holding time of 2 Days

The Nitrate (as N) analysis for sample 598 Bushmere Road MAR Pilot bore GPE065 commenced beyond the holding time of 2 Days

The Nitrite (as N) analysis for sample 599 Bushmere Road GPE069 commenced beyond the holding time of 2 Days

The Nitrate (as N) analysis for sample 599 Bushmere Road GPE069 commenced beyond the holding time of 2 Days

Reference Methods

The sample(s) referred to in this report were analysed by the following method(s)

Analyte	Method Reference	MDL	Samples	Location
Chemistry Detailed				
Anions				
Bromide	APHA (online edition) 4110 B	0.005 mg/L	1, 2, 3, 6	Auckland
Chloride	APHA (online edition) 4110 B	0.02 mg/L	1, 2, 3, 6	Auckland
Nitrate (as N)	APHA (online edition) 4110 B	0.002 mg/L	1, 2, 3, 6	Auckland
Nitrite (as N)	APHA (online edition) 4110 B	0.002 mg/L	1, 2, 3, 6	Auckland
Sulphate	APHA (online edition) 4110 B	0.02 mg/L	1, 2, 3, 6	Auckland
Ion Balance (Anions/Cations) by Calculation				
Anion Total	APHA (online edition) 1030 E	meq/L	1, 2, 3, 6	Auckland
Cation Total	APHA (online edition) 1030 E	meq/L	1, 2, 3, 6	Auckland
meq/L Difference	APHA (online edition) 1030 E	meq/L	1, 2, 3, 6	Auckland
Percent Difference	APHA (online edition) 1030 E		1, 2, 3, 6	Auckland
Sum of Anions + Cations	APHA (online edition) 1030 E		1, 2, 3, 6	Auckland
Sample Parameters and Field Testing				
Laboratory Arrival Temperature	APHA (online edition) 2550 B		All	Auckland
Laboratory Arrival Time	APHA (online edition) 2550 B		All	Auckland
General Testing				
Bicarbonate Alkalinity (as HCO3) by Titration	APHA (online edition) 2320 B	1 mg/L	1, 2, 3, 6	Auckland
Carbonate Alkalinity (as CO3) by Titration	APHA (online edition) 2320 B	1 mg/L	1, 2, 3, 6	Auckland
Dissolved Ammoniacal Nitrogen (as N) by Colorimetry/ Discrete Analyser	HMSO (1981) ISBN 0117516139	0.005 mg/L	1, 2, 3, 6	Auckland
Hydroxide Alkalinity (as CaCO3) by Titration	APHA (online edition) 2320 B	1 mg/L	1, 2, 3, 6	Auckland
Total Alkalinity (as CaCO3) by Titration	APHA (online edition) 2320 B	1 mg/L	1, 2, 3, 6	Auckland
Total Nitrogen (as N) by Persulphate Digestion and Flow Analysis	APHA (online edition) 4500-P J (modified), 4500-NO3 I	0.010 mg/L	1, 2, 3, 6	Auckland
Total Suspended Solids by Gravimetry	APHA (online edition) 2540 D / 2540 E	0.2 mg/L	7	Auckland
Turbidity (Infrared Light Source) by Nephelometry	ISO 7027-1:2016	0.05 FNU	All	Auckland
Turbidity by Nephelometry	APHA (online edition) 2130 B (modified)	0.05 NTU	All	Auckland
Metals				
Dissolved Metals by ICP-MS—Trace (Received Filtered)			
Arsenic (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.00010 mg/L	1, 2, 3, 6	Auckland
Cadmium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.00005 mg/L	1, 2, 3, 6	Auckland
Calcium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.010 mg/L	1, 2, 3, 6	Auckland
Iron (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.002 mg/L	1, 2, 3, 6	Auckland
Magnesium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.001 mg/L	1, 2, 3, 6	Auckland
Manganese (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.0005 mg/L	1, 2, 3, 6	Auckland
Potassium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.02 mg/L	1, 2, 3, 6	Auckland
Sodium (Dissolved)	APHA (online edition) 3125 B by ICPMS	0.1 mg/L	1, 2, 3, 6	Auckland
Total Metals by ICP-MS—Trace (Default Digest)	· · ·	24 		
Arsenic (Total)	APHA (online edition) 3125 B by ICPMS	0.00010 mg/L	1, 2, 3, 6	Auckland
Calcium (Total)	APHA (online edition) 3125 B by ICPMS	0.010 mg/L	1, 2, 3, 6	Auckland
Iron (Total)	APHA (online edition) 3125 B by ICPMS	0.002 mg/L	1, 2, 3, 6	Auckland
Magnesium (Total)	APHA (online edition) 3125 B by ICPMS	0.001 mg/L	1, 2, 3, 6	Auckland
Manganese (Total)	APHA (online edition) 3125 B by ICPMS	0.0005 mg/L	1, 2, 3, 6	Auckland
Potassium (Total)	APHA (online edition) 3125 B by ICPMS	0.05 mg/L	1, 2, 3, 6	Auckland
Sodium (Total)	APHA (online edition) 3125 B by ICPMS	0.1 mg/L	1, 2, 3, 6	Auckland

Organics				
Adhoc investigation				
Comments	As specified above		1, 2, 3, 6	Auckland
Estrogen (As Received) by Liquid Chroma				
17 alpha-ethynylestradiol	SPE cleanup, LC MS/MS	0.02 µg/L	1, 2, 3, 6	Auckland
beta-Estradiol	SPE cleanup, LC MS/MS	0.02 µg/L	1, 2, 3, 6	Auckland
Estriol	SPE cleanup, LC MS/MS	0.004 µg/L	1, 2, 3, 6	Auckland
Estrone	SPE cleanup, LC MS/MS	0.004 µg/L	1, 2, 3, 6	Auckland
Ethinylestradiol	SPE cleanup, LC MS/MS	0.04 µg/L	1, 2, 3, 6	Auckland
Total Estrogen	SPE cleanup, LC MS/MS	0.004 µg/L	1, 2, 3, 6	Auckland
Glyphosate & AMPA by Liquid Chromatog	raphy-Mass Spectrometry			
AMPA	In-house by LC-MS	0.04 µg/L	1, 2, 3, 6	Auckland
Glyphosate	In-house by LC-MS	0.04 µg/L	1, 2, 3, 6	Auckland
Organonitrogen & Organophosphorus Pe	sticides by Liquid Chromatography-Mass Spectrom	netry		
Acetochlor	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Alachlor	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
trazine desethyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
trazine desisopropyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Atrazine	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
zaconazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
zinphos methyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Benalaxyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
litertanol	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Bromacil	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Butachlor	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Carbaryl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Carbofuran	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Chlorfluazuron	In-house by LC-MS	0.4 µg/L	1, 2, 3, 6	Auckland
Chlorpyrifos methyl	In-house by LC-MS	0.4 µg/L	1, 2, 3, 6	Auckland
Chlorpyrifos	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Chlortoluron	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Cyanazine	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Diazinon	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Dichlofluanid	In-house by LC-MS	40 µg/L	1, 2, 3, 6	Auckland
Dichlorvos	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
lifenoconazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Dimethoate	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Diphenylamine	In-house by LC-MS	2 µg/L	1, 2, 3, 6	Auckland
Diuron	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
enpropimorph	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
luazifop butyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
luometuron	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
lusilazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
luvalinate tau	In-house by LC-MS	2 µg/L	1, 2, 3, 6	Auckland
uralaxyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
laloxyfop methyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
lexaconazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
lexazinone	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
nazapyr	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
PBC	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
resoxim methyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
inuron	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
lalathion	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
letalaxyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
letolachlor	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
letribuzin	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
letsulfuron	In-house by LC-MS	0.05 µg/L	1, 2, 3, 6	Auckland
Nolinate	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
<i>l</i> yclobutanil	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Valed	In-house by LC-MS	1 µg/L	1, 2, 3, 6	Auckland
Vorflurazon	In-house by LC-MS	0.1 μg/L	1, 2, 3, 6	Auckland

Organics				
Organonitrogen & Organophosphorus Pesticides by Liqu	id Chromatography-Mass Spectrometry			
Oryzalin	In-house by LC-MS	4 µg/L	1, 2, 3, 6	Auckland
Oxadiazon	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Paclobutrazol	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Parathion Ethyl	In-house by LC-MS	1 µg/L	1, 2, 3, 6	Auckland
Pendimethalin	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Pirimicarb	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Pirimiphos methyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Prochloraz	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Prometryne	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Propachlor	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Propanil	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Propazine	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Propiconazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Pyriproxifen	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Quizalofop ethyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Simazine	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Simetryn	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Sulfentrazone	In-house by LC-MS	2 µg/L	1, 2, 3, 6	Auckland
ТСМТВ	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Tebuconazol	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Terbacil	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Terbufos	In-house by LC-MS	1 µg/L	1, 2, 3, 6	Auckland
Terbumeton	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Terbuthylazine desethyl	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Terbuthylazine	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Terbutryn	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Thiabendazole	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Thiobencarb	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Tolylfluanide	In-house by LC-MS	40 µg/L	1, 2, 3, 6	Auckland
Triazophos	In-house by LC-MS	0.1 µg/L	1, 2, 3, 6	Auckland
Pharmaceutical and Personal Care Products by Liquid Ch	romatography-Mass Spectrometry			
Acesulfame	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6	Auckland
Atenolol	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Benzophenone	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6	Auckland
Bupropion	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Caffeine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Carbamazepine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Ciprofloxacin	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6	Auckland
Cotinine DEET	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Diclofenac	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6 1, 2, 2, 6	Auckland Auckland
Diltiazem	Instrumental Techniques by LC/MS 2.70	2 ng/L	1, 2, 3, 6 1, 2, 2, 6	
	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6 1, 2, 3, 6	Auckland
Diphenhydramine Doxycycline	Instrumental Techniques by LC/MS 2.70 Instrumental Techniques by LC/MS 2.70	20 ng/L 20 ng/L	1, 2, 3, 6 1, 2, 3, 6	Auckland Auckland
Fluoxetine	Instrumental Techniques by LC/MS 2.70	5		Auckland
Gabapentin	Instrumental Techniques by LC/MS 2.70	0.5 ng/L 0.5 ng/L	1, 2, 3, 6 1, 2, 3, 6	Auckland
Gemfibrozil	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 0 1, 2, 3, 6	Auckland
Ibuprofen	Instrumental Techniques by LC/MS 2.70	100 ng/L	1, 2, 3, 6	Auckland
Lamotrigine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, <u>2</u> , 3, 6	Auckland
Metoprolol	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, <u>2</u> , 3, 6	Auckland
Naproxen	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6	Auckland
Norcotinine	Instrumental Techniques by LC/MS 2.70	1 ng/L	1, 2, 3, 6	Auckland
Paracetamol	Instrumental Techniques by LC/MS 2.70	2 ng/L	1, 2, 3, 6	Auckland
Sucralose	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Sulfamethoxazole	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Triclocarban	Instrumental Techniques by LC/MS 2.70	20 ng/L	1, 2, 3, 6	Auckland
Triclosan	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Trimethoprim	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Varenicline	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
L		-		

Pharmaceutical and Personal Care Products by L	iquid Chromatography-Mass Spectrometry			
Venlafaxine	Instrumental Techniques by LC/MS 2.70	0.5 ng/L	1, 2, 3, 6	Auckland
Microbiology				
Enterococci by Membrane Filtration				
Enterococci	APHA (online edition) 9230 C	2 cfu/100 mL	1, 2, 3, 6	Auckland
Escherichia coli by Membrane Filtration				
Escherichia coli	USEPA Method 1603	2 cfu/100 mL	1, 2, 3, 6	Auckland
Faecal coliforms by Membrane Filtration				
Faecal coliforms	APHA (online edition) 9222 D	2 cfu/100 mL	1, 2, 3, 6	Auckland
Preparations				
Digest for Total Metals in Liquids	In House (4:1 Nitric:Hydrochloric Acid, 95°C 2 hours)		1, 2, 3, 6	Auckland
Membrane Filtration (0.45 µm)	APHA (online edition) 4500-P B (preliminary filtration)		1, 2, 3, 6	Auckland

For more information please contact the Operations Manager.

Samples, with suitable preservation and stability of analytes, will be held by the laboratory for a period of two weeks after results have been reported, unless otherwise advised by the submitter.

Watercare Laboratory Services is a division of Watercare Services Limited .

This report may not be reproduced, except in full, without the written authority of the Operations Manager.

Hompare

Peter Boniface KTP Signatory

Watercare Laboratory Services

Gisborne District Council groundwater MAR samples

Lab ID	Sample ID	Date/Time sampled	Parameter	Result	Units	Detection limit
СМВ200686	598 Bushmere Rd MAR Injection bore 350m GPE068	12-May-20	Somatic bacteriophage according to USEPA method 1602*	0	PFU per 100 mL	<1 PFU per 100 mL
CMB200687	598 Bushmere Rd MAR Injection Bore 75m GPE067	12-May-20	Somatic bacteriophage according to USEPA method 1602	0	PFU per 100 mL	<1 PFU per 100 mL
	598 Bushmere Rd GPE065					
CMB200688		12-May-20	Somatic bacteriophage according to USEPA method 1602	0	PFU per 100 mL	<1 PFU per 100 mL
	599 Bushmere Rd GPE069					
CMB200689		12-May-20	Somatic bacteriophage according to USEPA method 1602	0	PFU per 100 mL	<1 PFU per 100 mL
	Waipaoa River @ Infiltration Chamber					
CMB200690		12-May-20	Somatic bacteriophage according to USEPA method 1602	66	PFU per 100 mL	<1 PFU per 100 mL
	598 Bushmere Rd MAR Headworks Outlet					
CMB200691		12-May-20	Somatic bacteriophage according to USEPA method 1602	9	PFU per 100 mL	<1 PFU per 100 mL

* USEPA-a (2001) Method 1602: Male-specific (F+) and somatic coliphage in Water by Single Agar Layer (SAL) procedure. Washington, DC: Office of Water, USEPA.

Gisborne District Council groundwater MAR samples

Lab ID	Sample ID	Date/Time sampled	Parameter	Result	Units	Detection limit
CN 4D 300000	598 Bushmere Rd MAR Injection bore 350m GPE068					
	Injection bore 350m GPE068	2-Jun-20	Somatic bacteriophage according to USEPA method 1602*	0	PFU per 100 mL	<1 PFU per 100 mL
	598 Bushmere Rd MAR Injection					
СМВ200799	Bore 75m GPE067	2-Jun-20	Somatic bacteriophage according to USEPA method 1602	0	PFU per 100 mL	<1 PFU per 100 mL
	598 Bushmere Rd MAR Pilot Bore GPE065					
CMB200798		2-Jun-20	Somatic bacteriophage according to USEPA method 1602	0	PFU per 100 mL	<1 PFU per 100 mL
	599 Bushmere Rd GPE069					
CMB200801		2-Jun-20	Somatic bacteriophage according to USEPA method 1602	0	PFU per 100 mL	<1 PFU per 100 mL

* USEPA-a (2001) Method 1602: Male-specific (F+) and somatic coliphage in Water by Single Agar Layer (SAL) procedure. Washington, DC: Office of Water, USEPA.

Gisborne District Council groundwater MAR samples

Lab ID	Sample ID	Date/Time sampled	Parameter	Result	Units	Detection limit
СМВ200838	598 Bushmere Rd MAR Injection bore 350m GPE068	24-Jun-20	Somatic bacteriophage according to USEPA method 1602*	0	PFU per 100 mL	<1 PFU per 100 mL
СМВ200839	598 Bushmere Rd MAR Injection Bore 75m GPE067	24-Jun-20	Somatic bacteriophage according to USEPA method 1602	0	PFU per 100 mL	<1 PFU per 100 mL
CMB200840	598 Bushmere Rd MAR Pilot Bore GPE065	24-Jun-20	Somatic bacteriophage according to USEPA method 1602	0	PFU per 100 mL	<1 PFU per 100 mL
	599 Bushmere Rd GPE069	24 341 20				
CMB200841		24-Jun-20	Somatic bacteriophage according to USEPA method 1602	0	PFU per 100 mL	<1 PFU per 100 mL
	Waipaoa River @ Infiltration Chamber					
CMB200842		24-Jun-20	Somatic bacteriophage according to USEPA method 1602	95	PFU per 100 mL	<1 PFU per 100 mL

* USEPA-a (2001) Method 1602: Male-specific (F+) and somatic coliphage in Water by Single Agar Layer (SAL) procedure. Washington, DC: Office of Water, USEPA.

ATTACHMENT 4

Current Gisborne MAR Injection Trial Resource Consent

Consents granted by GDC to Gisborne District Council

To drill up to three bores (LB-2016-107112-00)

Take Surface Water from the Waipaoa River (WS-2016-107114-00), and Discharge Water to Land, and Water to Water via injection (DW-2016-107113-00)

Conditions for Resource Consent

GISBORNE DISTRICT COUNCIL

A resource consent:

- a) Under section 9(2)(a) of the Resource Management Act 1991 and Rule 5.2.4 of the Proposed Gisborne Regional Freshwater Plan to undertake a restricted discretionary activity being to Install up to three Bores, take water for the purposes of pump testing and the associated discharge of drilling fluids and water to land (LB-2016-107112-00); and
- b) Under section 14(2)(a) of the Resource Management Act 1991 and Rule 4.1.7 of the Proposed Gisborne Regional Freshwater Plan to undertake a restricted discretionary activity being to Take and Use Water from the Waipaoa River as a 'B' block allocation WS-2016-107114-00); and
- c) Under section 15(1)(a) and (b) of the Resource Management Act 1991 and Rule 5.2.8 of the Proposed Gisborne Regional Freshwater Plan to undertake a discretionary activity being to Discharge Water to Water via Injection (DW-2016-107113-00).

subject to the following conditions:

Purpose

 For the purpose of drilling up to 3 bores, taking water from the Waipaoa River under a B Block allocation and discharging water to water (via injection) and to land associated with the Poverty Bay Flats managed aquifer recharge pilot trial <u>Phase 2</u> of the Makauri Aquifer.

Location

2. The activities authorised under this consent shall be located at 555 Matawai Road, Gisborne as shown on the plan entitled *Golder Associates – Injection Bore Location* dated August 2016

Map Reference

3. At or about map references NZTM 2028441, 5714961 and NZTM 2027989, 5715196.

Legal Description

4. Injection Bore and Pilot Bores: Lot 28 DP 1154 and Lot 24 DP1154

Water Intake and Infiltration Gallery: Part sec 2 SO 8571 and Crown Owned River (Waipaoa River)

Drilling Works

- 5. Any works carried out in conjunction with this consent shall be in general accordance with the depth and location information supplied in support of the application.
- 6. During the construction of the bore, the consent holder shall ensure that recoverable drilling fluids shall be discharged to land in a manner where it shall not enter water.

- 7. The consent holder shall complete any maintenance works required for the bore(s) and associated equipment within 14 days as specified by notice in writing from the District Council's Consents Manger hereafter referred to as the GC Manager.
- All bores installed under this resource consent shall meet the requirements of schedule 12 of the Proposed Gisborne Regional Freshwater Plan (now Appendix H21: Bore Construction <u>Requirements of the Tairāwhiti Resource Management Plan</u>).
- 9. A plot bore shall be installed within 30 metres of the main injection bore. The pilot bore shall be fitted with a piezometer and monitoring equipment to inform the monitoring reports required by consent condition 35.
- 10. The consent holder shall collect drill cuttings from the pilot bore required by condition 9 and analyses for minerals in accordance with the recommendations contained within the resource consent application document and accompanying reports submitted 17 May 2016.
- 11. No injection bore authorised by the consent shall be installed within 100 metres of any other existing consented abstraction bore in the Makauri Aquifer.

Notification of Drilling Works

12. The consent holder shall email <u>water.infor@gdc.govt.nz</u> at least 24 hours before commencing any drilling activity that is authorised by this resource consent

Bore Detail

- 13. Within one month of completion of the bore installations, the consent holder shall forward to the Gisborne District Council, a detailed bore log for each bore installed and as-built construction diagram.
- 14. The bore log, required under condition 13, shall, as a minimum, describe:
 - (a) Location of the bore or well (including property address and NZTM Grid Reference or Global Positioning System (GPS) co-ordinates);
 - (b) Bore head pressure or Depth to water level (whichever is applicable);
 - (c) The purpose of the bore or well;
 - (d) Records of pump test(s), detailing flow rates, drawdown at specific times, and any information analysis;
 - (e) Actual bore depth and diameter;
 - (f) Full construction details (including final casing and screen details);
 - (g) A bore log showing the depths of geological strata intercepted by the bore;
 - (h) The temperature of the bore water; and
 - (i) The method of drilling.
- 15. The as built construction diagram, required under condition 13 shall show the final cross-sectional construction of the bore (including bore depth, casing and screen details).

Surface Water Take and Use

- 16. The daily quantity of water taken from Waipaoa River for the purposes of the pilot trial shall not exceed 1901 cubic metres.
- 17. The instantaneous rate of take from the Waipaoa River shall not exceed 22 litres per second at any time.
- 18. Abstraction from the Waipaoa River shall only occur when the flow at Kanakanaia and Matawhero, as measured by Gisborne District Council is greater than 4000 litres per second.
- 19. Abstraction from the Waipaoa River:
 - (a) shall only occur during the period 1 May to 30 September each year periods when the flow of the Waipaoa River at Kanakania is greater than 4,000 litres per second; and
 - (b) <u>shall not occur when the flow of the Waipaoa River at Kanakania has been at or</u> <u>below 4,100 litres per second for a consecutive period of 5 or more days;</u>

for the duration of this resource consent.

- 20. Water shall only be used for the purpose of completing <u>a</u> <u>the Phase 2</u> pilot trial of injecting water into the Makauri Aquifer, or in the case of discharging water to land in accordance with the resource consent application document.
- 21. The total volume of water abstracted from the Waipaoa River under this consent shall not exceed 110,000 cubic metres, being 10,000 cubic metres for a pre-trial injection and 100,000 cubic metres for the injection trial 378,000 cubic metres per year.
- 22. Surface water abstraction shall only occur from the infiltration gallery as detailed in the application for this consent.
- 23. Should adverse effects in the Waipaoa River or Makauri Aquifer be identified, then the injection or taking of water by this permit shall only occur as specifically authorised by the GDC Manager.

Water Use Monitoring

- 24. The consent holder shall install a water meter on each pump head/intake prior to the exercise of this consent. The water meter/s shall:
 - (a) meet the Resource Management (Measuring and Reporting of Water Takes) Regulations 2010;
 - (b) be installed and maintained in accordance with manufacturer's specifications, and to the satisfaction of the Gisborne District Council;
 - (c) be installed at a location that will ensure the entire water take is measured;
 - (d) be sealed and as tamper-proof as practicable;
 - (e) be suited to the qualities of the water it is measuring (such as temperature, algae content and sediment content);
 - (f) be able to be fitted with a recording device; and
 - (g) be able to measure both cumulative water abstraction and the instantaneous rate of take to an accuracy of $\pm 5\%$.

- 25. The water meter shall be verified by a suitably qualified operator within two months of the exercise of this resource consent. Within one month of verification being undertaken, the consent holder shall provide appropriate evidence of verification to the Gisborne District Council.
- 26. All practicable measures shall be taken to ensure that the water meter and recording device are fully functional at all times. All malfunctions of the water meter shall be reported to the required by condition 27 for the period between 1 July and 30 June of the preceding year.

Discharge of Water to Makauri Aquifer

- 27. The rate of water injected into the Makauri Aquifer shall not exceed 22 litres per second and the total volume of water injected under this consent shall not exceed **110365**,000 cubic metres **per year for two years**, **being 10,000 cubic metres for a pre-trial injection and 100,000 cubic metres for the injection trial**.
- 28. The injection of water into the Makauri Aquifer and associated controls and monitoring shall be undertaken in general accordance with the Australian Guidelines for Water Recycling – Managed Aquifer Recharge document number 24 (July 2009).
- 29. Water shall only be injected into the Makauri Aquifer via the injection bore authorised under this consent.
- 30. The consent holder shall install a suitable filter/s inline before injection water enters the Makauri aquifer to treat water prior to injection.
- 31. No water shall be discharged into the Makauri Aquifer if the following discharge limits have been exceeded:
 - (a) A concentration of E.coli of 100 cfu/100ml; and
 - (b) Turbidity of 50100 NTU; or
 - (c) Any amended limit(s) adjusted with the approval of an independent and suitably qualified and experienced professional and certified by the GDC Manager.
- 32. Prior to seeking certification of any amended limits, the consent holder shall seek input from mana whenua. The consent holder shall advise, in writing, the Council of any advice received from mana whenua and how that advice has been incorporated into decision making.

Pilot Trial Monitoring and Reporting

- 33. The consent holder must undertake the activity in general accordance with the application and accompanying reports submitted 17th May 2016 to the Bay of Plenty Regional Council except to the extent that these are required to be modified to comply with the conditions of this permit.
- 34. The consent holder shall, 20 working days prior to any drilling injection occurring under this consent, lodge an updated Management Plan with the GDC Manager. The Consent Holder shall not commence works authorised by this consent until the updated Management Plan has been certified in writing by the GDC Manager acting in a technical certification capacity. The updated Management Plan shall be peer reviewed by an independent and suitably qualified professional that is experienced in reviewing such a management plan. The objectives of the updated Management Plan for Phase 2 of the Poverty Bay MAR Trial are to provide guidance for the construction, operation, monitoring and mitigation of the injection bore and flow system. This management plan shall incorporate methods and monitoring as per the resource consent application and shall include, but not be limited to:

- (a) Drilling plan: including as built design, location, water volume metering, Method of drilling, Grouting and sealing, pump testing, observation bore design, rock sampling and aquifer testing. The drilling plan shall comply with schedule 12 of the Proposed Gisborne District Council's Regional Freshwater Plan. The Drilling and Aquifer Testing Plan will guide the injection construction bore requirements and aquifer testing;
- (c)(b) Water injection plan: including methods used, rates, volumes of water to be injected and levels of treatment, monitoring and recording of rates and volumes and water quality on a regular basis (continuous where possible) including suspended sediment, bacterial contaminants and clogging, go/no go decisions and trial closure. The Water Injection Plan will outline the site operational plan, management of source water quality parameters, specifically suspended sediment, bacterial contaminants and management of clogging and any borehead overflow issues;
- (d)(c) Pilot trial (Phase 2) monitoring plan: including a wider district wide monitoring plan that shall report on water quality and hydraulic water level responses for a period not less than three months following the completion of injection. The Monitoring and Mitigation Plan will outline the position of groundwater level and quality monitoring sites, disinfection by-product management and objectives of each monitoring site and schedule of automated and manual monitoring at each site and detail parameters to be measured. As discussed in Section 8.7 of the AEE, the plan will include installation of two new purpose-built monitoring bores and the addition of three additional existing bores to the monitoring network subject to bore condition assessments. The plan will include installation of automated and telemetered pressure sensors at existing and new monitoring sites to enable real monitoring of bore static water levels. The plan will contain alert and trigger levels in terms of water quality and water level responses, so as to ensure early intervention occurs to avoid the occurrence of effects that adversely impact on the land use activities of any neighbouring land owners.

At all times the consent holder must comply with the certified Management Plan.

- 35. **Post bore installation, and pP**rior to any discharge/injection of surface water into the Makauri Aquifer, the Management Plan referred to in condition 33 shall be updated and re-certified in writing by the GDC Manager.
- 36. Following the pre-injection trial of 10,000 m³ the consent holder shall provide a report to the GDC Manager on the performance of this preliminary trial, with particular reference to the water quality and water quantity effects that arose. Any updates to the Management Plan referred to in condition 33 that are required based on the results of the preliminary trial shall be made and re-certified in writing by the GDC Manager. The commencement of the main trial shall not commence until this reporting and potential re-certification (if required) has been completed.
- 37. By 31 December of each year when the injection trial has been undertaken the consent holder shall prepare a report describing the trial activities that have taken place, the monitoring data obtained and any trial activities planned for the upcoming year. This report shall be provided to the GDC Manager and the Community Liaison Group.
- 38. Within four weeks of granting the consent, the consent holder shall commence a collaborative process with mana whenua that will ensure mana whenua input into decisions regarding the design, implementation and evaluation of the monitoring programme for the trial. The monitoring and evaluation programme shall include the development and implementation of a process for monitoring and assessing the cultural health of the Makauri Aquifer and Waipaoa River.

- 39. A minimum of three (3) sets of water quality monitoring samples shall be taken from bores that are identified in the resource consent application document as pre-injection sample bores. The timing shall be determined in the Management Plan required by condition 33.
- 40. A copy of these consent conditions and the certified Management Plan shall be held on site and accessible for all staff and contractors.
- 41. Within three months of completing the post-trial monitoring, the consent holder shall convene a workshop to consider methods for assessing changes in cultural health of waterbodies potentially affected by the Managed Aquifer Recharge injection trial. Following the workshop, and within one month, the consent holder shall provide a report to the Community Liaison Group, providing recommendations for monitoring the cultural health of waterbodies should a more comprehensive Managed Aquifer Replenishment programme be promoted or instigated by the consent holder.
- 42. The consent holder shall be responsible for all person(s) and contracted operations related to the exercise of this consent/permit and ensure that all persons on site are aware of the conditions of consent and ensure compliance with the permit/consent conditions.

Liaison Groups

- 43. The consent holder shall establish a Community Liaison Group (CLG) to provide an ongoing point of contact between the consent holder and the community in relation to the operation and monitoring of the injection trial. The consent holder shall send invitations for the first meeting of the CLG within four weeks of the commencement of this consent.
- 44. The consent holder shall invite members of the stakeholder reference group established during the consultation period of developing the proposal and application for the injection trial. At the time of this invitation, the consent holder shall ask such persons whether they wish to receive further invitations to the GLC meetings.
- 45. If a positive response is received (whether by main, email, telephone message or in person), that person shall be invited to CLG meetings until the consent holder is advised that such invitations are no longer desired. The consent holder may also invite any other representative(s) of local tangata whenua, the Consent Authority, and/or any other person who may be able to provide assistance, to attend CLG meetings.

Cultural Impact Assessment and Monitoring

- 46. Prior to the commencement of this consent, the consent holder shall commission a cultural impact assessment of the proposed Phase 2 trial, taking into account recommendations provided in the review by Dr Nick Roskruge (Land Management Group 2017) and to be undertaken in collaboration with Rongowhakaata lwi Trust. Amongst other matters the cultural impact assessment shall set out the formal relationship between the consent holder and the Rongowhakaata lwi Trust and the manner in which representatives of the Rongowhakaata lwi Trust are to participate in the implementation of the cultural impact assessment with respect to implementation, monitoring and reporting on outcomes
- 47. <u>The cultural impact assessment shall be submitted to and be approved by the GDC</u> <u>Manager, prior to works commencing as follows:</u>
 - (a) <u>Where the cultural impact assessment submitted to the GDC Manager is supported</u> by the Rongowhakaata lwi Trust, the approval by the GDC Manager shall be limited to acceptance of the document; and
 - (b) <u>Where the cultural impact assessment submitted to the GDC Manager is not</u> <u>supported by the Rongowhakaata lwi Trust is must be accompanied by details of</u>

the matters that have not been agreed and the position of the two parties. The approval by the GDC Manager in this instance shall include acting in a professional capacity to determine the final content of the cultural impact assessment.

Review of Consent Conditions

- **48.50**. The Gisborne District Council may serve notice on the permit holder of its intention to review the conditions of this resource consent in accordance with section 128 of the Resource Management Act 1991. Such a review will be within one month after the first anniversary of the commencement of this resource consent, or at monthly intervals during the works and thereafter within one month after each subsequent anniversary, for the following reasons:
 - (a) To require the consent holder to adopt the best practicable option to remove or reduce any adverse effects on the environment; or
 - (b) To deal with any other adverse effects on the environment on which the exercise of this permit may have an influence; or
 - (c) To review the appropriateness of consent conditions if there are changes to relevant national standards, regulations or guidelines or the Council's relevant regional and district level plans. Should any adverse effects be identified in the exercising of this consent, further activity shall only occur as specifically authorised by the GDC Manager.

Resource Management Charges

49.51. The consent holder shall pay to the Gisborne District Council any administration, inspection or monitoring charges payable in respect of this resource consent. Any such charges shall be either fixed or additional charges set in accordance with section 36 of the Resource Management Act 1991 and section 150 of the Local Government Act 2002.

Term of Consent

51.52. This consent shall expire on 14 November 2021.

The Resource Consent hereby authorised is granted under the Resource Management Act 1991 by the consent authority subject to its servants and agents being permitted access to the relevant parts of the site at all times for the purpose of carrying out inspections, surveys, investigations, tests, measurements or taking samples and does not constitute an authority under any other Act, Regulation or Bylaw.

Advice Notes:

- 1. This consent does not authorise the holder to modify or disturb any archaeological or listed historic sites within the area affected by this consent. Should any artefacts, bones or any other sites of archaeological significant be discovered within the area affected by this operation, written authorisation should be obtained from Heritage New Zealand before any damage, modification or destruction is undertaken.
- 2. The consent holder is advised that non-compliance with consent conditions may result in enforcement action against the consent holder and/or their contractor(s).