

Isthmus Group Limited

Geotechnical Assessment Report for Stage 2 Resource Consent Application

Titirangi Summit Project, Gisborne

Project Reference: 13364 24.08.2021 Revision: 1

Table of Contents

1	INTRODUCTION	1
2	EXISTING GEOTECHNICAL REPORT	2
3	GEOTECHNICAL DISCUSSION OF STAGE 2 PROPOSAL	2
4	CONCLUSIONS	4
5	LIMITATIONS	5
6	REFERENCES	5
AP	PENDIX A	Α
2	018 LDE Geotechnical Report	а

DOCUMENT CONTROL

Version	Issued For:	Date	Prepared By	Reviewed By
0	Resource Consent	24/08/2021	Joe Jollor	Bastat
			Joel Pollock Senior Engineering Geologist <i>BSc Earth Science and</i> <i>Geography</i>	Rob Haskell Geotechnical Group Manager <i>BEng, MEngNZ</i>

M:\LDE - Project\ID2\152DC18A-601D-4CF9-8ACA-6EF80FEBB7A9\0\25000-25999\25659\L\L\13364-10-Geo Report-Earthworks Addendum Detailed-25659.2 (ID 25659).docx

1 INTRODUCTION

LDE Ltd has been engaged by Isthmus Group Limited on behalf of Gisborne District Council to provide geotechnical documentation to support a resource consent application for Stage 2 of a development at Titirangi Summit, Gisborne, comprising of a new 772m² building that incorporates the existing gun emplacement and includes a kiosk/café, toilets, a community space, and an observatory on Tītīrangi Reserve.

Resource Consents (LU-2019-108839-00, LL-2019-109004-00 and NC-2019-109005-00) were granted for Stage 1 of the project which is now complete. The initial works were demolition and removal of an observatory and cutting down of the summit. The ground was battered up to the gun emplacement that has been retained.

Earthworks associated with the Stage 2 works, as shown by consent plans (Isthmus, 16 August 2021) and relevant to geotechnical consideration, are primarily cut to remove the soil around the north and east sides of the gun emplacement, excavate the platform to finished ground level, and excavate for foundations or retaining structures, as required. After construction, landscape filling is proposed around the sides and periphery of the building. Assuming cut materials can be reused as site-won fill, a budget of -1094m³ is indicated (Figure 1).

Figure 1: Snip of Earthworks Plan. Source: Isthmus Architects

2 EXISTING GEOTECHNICAL REPORT

One existing geotechnical report was completed for the Stage 1 earthworks and the building area prior to detailed design of the building and site layout:

 Titirangi Summit Development, Part Lots 2 & 3 DP 5159 – Geotechnical Investigation Report; LDE, 2018 (LDE Ltd, 2018).

The investigation work consisted of a desktop study, a site walkover geomorphological appraisal, and geotechnical testing including boreholes, cone penetration tests (CPTu), test pits and logging of exposures. Limit equilibrium slope stability analyses were completed modelling the site after completion of the proposed Stage 1 earthworks.

The report concluded that a suitable building platform exists in the cut down area with provisions for:

- Isolation of buildings from the edges of the cut platform by a distance five times the slope's height, with grading of the intervening ground.
- A generic setback of 10m (assuming the highest envisioned cut slope following earthworks) from the edges of the cut platform.
- Construction of engineered retaining structures to support the cut slopes.
- o Deepening of foundations near slope edges.
- Further cutting down of the ground to marry the cut surface to the adjacent ground.

3 GEOTECHNICAL DISCUSSION OF STAGE 2 PROPOSAL

The geotechnical report's (LDE Ltd, 2018) description of the Stage 1 development aligns with the completed work as summarised in 2020 survey documentation (Civil Project Solutions (CPS), 11 May 2020), although batter slopes up the gun emplacement remain that were not described. The Stage 2 works as proposed will essentially complete the full scope of cut earthworks described in the 2018 report. No further work is required for the cut earthworks proposed for Stage 2.

The building proposed extends beyond the generic 10m building cut platform setback that was recommended. However, the survey data shows that in most areas the slopes between the cut platform and adjacent ground are less than 1.0m in height. Following the recommendation to isolate structures by a distance five times the slope's height, the setback can be regarded as being no more than 5m. Elsewhere, retaining walls are proposed on the southeast side and around the north through southwest sides of the building to support slopes and fill (Figure 2). The siting of the building with the proposed engineered retaining walls, appears to comply with the recommendations of the geotechnical report (LDE Ltd, 2018).

Retaining Wall Locations.

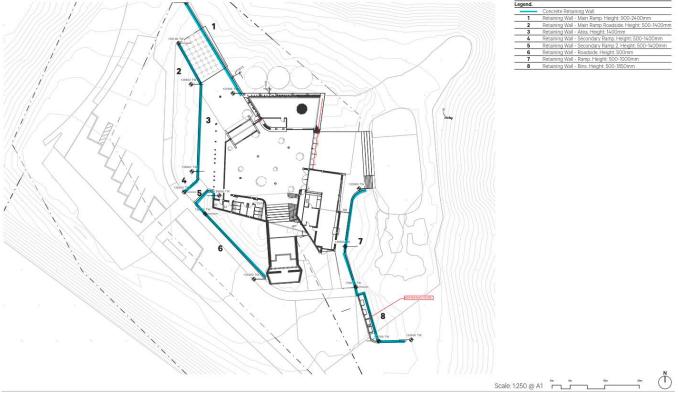


Figure 2: Snip of Retaining Wall plan. Source: Isthmus Architects.

Placement of fill onsite was not recommended. Despite this, the landscape filling proposed in Stage 2 around the periphery of the building is generally considered minor and not likely to have ill effect on stability. In two areas the effects of the filling on the stability of the adjacent slopes must be considered by numerical modelling. These are on the north side of the building where the fill exceeds 2m and on the east side of the development adjacent to the night viewing platform (Figure 3).

Appendix 2. Earthworks Plan.

Figure 3: Annotated snip of Cut/Fill earthworks Plan showing areas of filling (ovals) requiring geotechnical stability consideration and indicative cross sections (lines). Source: Isthmus Architects.

4 CONCLUSIONS

The recommended geotechnical assessment of the stability of the slopes with proposed filling is considered unlikely to change the scope or outcome of the Stage 2 resource consent application. If the works are found to pose an instability risk, the filling will be either omitted and the fill cut-to-waste, or additional mitigation measures recommended.

No further geotechnical investigation is considered necessary. A new geotechnical cross section to the northnortheast can be devised using test data already collected. The existing cross section to the east can be utilised to consider the filling near the east slope (refer above to Figure 3.

We consider the additional geotechnical assessment can be summarised in a new report specific to the developed design of the building and submitted with the Building Consent application.

In summary, the existing geotechnical report and the conclusions within are considered sufficient to accompany the application for Resource Consent for the Stage 2 application.

5 LIMITATIONS

The ground conditions described in this are professional opinion based on existing geotechnical data and a review of supplied development plans. Additional information that may affect the recommendations made in this report should be forwarded to LDE Ltd.

This report was prepared in general accordance with current standards, codes and practice at the time of this report. These may be subject to change.

This report has been prepared for Isthmus, on behalf of Gisborne District Council, for the purpose of supporting an application for Resource Consent for Stage 2 of the development. It is not to be relied upon or used out of context by any other person without further reference to the Gisborne Geotechnical Section of Land Development and Engineering Ltd.

6 **R**EFERENCES

Civil Project Solutions (CPS). (11 May 2020). *Kaiti Hill- GIsborne Te Panuku Tu Titirangi Summit Topographic Survey (Set).* Gisborne: LDE.

Isthmus. (16 August 2021). Te Panuku Tu. Resource Consent. Design Package. Isthmus.

LDE Ltd. (2018). *Titirangi Summit Development, Part Lots 2 & 3 DP 5159 – Geotechnical Investigation Report.* Gisborne: LDE.

Appendix A

2018 LDE GEOTECHNICAL REPORT

TITIRANGI SUMMIT DEVELOPMENT PART LOTS 2 & 3 DP 5159, TITIRANGI DRIVE, GISBORNE

GEOTECHNICAL INVESTIGATION REPORT

Project Reference: 13364 14 June 2018

EXECUTIVE SUMMARY

Based on the investigation and appraisal of the site reported herein, the following key conclusions and recommendations have been drawn with respect to the stability of the Titirangi Summit with a proposed cutting down of the landform to the level of the Summit carpark:

- The Titirangi summit is occupied by the James Cook Observatory, associated infrastructure, and a World War 2 gun emplacement. A carpark has been formed on its western side and benches exist on its southern and eastern sides. Moderately steep to steep slopes exist beyond these features.
- 2. The subsurface investigation work confirms that parts of the observatory and its associated infrastructure (paths/retaining walls) have been built over various thicknesses of non-engineered fill, in turn overlying Mangatuna Formation geology, some of which is prone to creep instability and landslippage. Parts of the observatory and its associated paths/retaining walls have been damaged by movement in these soils.
- 3. With the proposed cutting down of the site to the approximate level of the summit carpark (highest point), the instability issues and geology responsible for the damage to the existing observatory and associated infrastructure will be essentially removed, with only minor amounts of problematic soil expected to remain which can be remediated.
- 4. Based on survey data, a large flat platform measuring approximately 2280m² in area will be created. This area excludes the existing summit carpark, area occupied by the gun emplacement and the bench (forestry skid site) areas located on the southeast, east and northeast sides of the landform.
- 5. Relict cut slopes up to some 2m in height may remain below the new platforms edge (i.e. it won't daylight at the same level of the benches and platforms surrounding the site). The cut will however daylight out of the natural slope at its north/northwest end and onto the highpoint of the summit carpark.
- 6. A low risk of fault rupture or liquefaction was identified at the site.
- 7. Instability has historically and recently affected the steep natural and man-made slopes surrounding the site. The majority of this limited to shallow-seated landslippage and erosion. Deeper-seated instability (isolated from site) exists further to the west and northwest of the site, although evidence shows this primarily occurred in historic fill materials.
- 8. Stability analyses indicate that the proposed platform is fundamentally stable, with only minor risk of instability occurring in the outside edges of the new platform.
- Assuming a conservative building set-back distance of 10m in from the perimeter of the new platform, an area of at least 700m² is still expected to be available for building purposes without any slope stabilisation requirements.

ii

- 10. The remaining steep sections of slope between the proposed platform and surrounding carpark/skid site benches (up to some 2m in height) are expected to be able to be battered to a low gradient, retained or engineered to a suitable standard.
- 11. Some soil remediation may be required to link any future building proposal to the existing gun emplacement, given the likelihood of fill materials existing around the sides and rear of the feature.
- 12. Reticulation is recommended for wastewater and stormwater disposal.
- 13. A building specific ground investigation is will be required to be undertaken as part of any building consent application once the particular building proposal is known. Recommendations made in this report may be able to be made as part of that work.

This executive summary must not be taken out of context with the balance of this report. Additional recommendations and considerations are made in the body of the report, which provide the context for the above key findings relating to the site under consideration.

14/06/2018

CONTENTS

1		1
2	SITE CHARACTERISTICS	2
З	DEVELOPMENT PROPOSAL	4
4	INVESTIGATION	5
5	GROUND CONDITIONS	
-	5.1 GENERAL	
-	5.2 GEOLOGY	
5	5.3 SUBSURFACE CONDITIONS	
	5.3.1 Summary	7
	 5.3.2 Non-engineered Fill, Topsoil & Rhyolitic Tephra 5.3.3 Pleistocene Mangatuna Formation 	/ R
	5.3.4 Tertiary Bedrock	8
	5.3.5 Exposed Geology After Completion of Proposed Earthworks	
	5.4 SOIL MOISTURE PROFILE AND GROUNDWATER CONDITIONS	
5	5.5 SEISMIC SUBSOIL CATEGORY	
6	NATURAL HAZARDS AND GROUND DEFORMATION POTENTIAL	.10
-	6.1 General	
6	6.2 Earthquake Hazards	
	 6.2.1 Earthquake Shaking 6.2.2 Fault Line Surface Rupture 	
6	6.3 LIQUEFACTION	
_	6.4 Consolidation Settlement	
6	0.5 Slope Instability	
	6.5.1 Assessment Methodology	14
	 6.5.2 Geomorphological Assessment 6.5.3 Numeric Stability Assessment 	15
6	6.5.3 Numeric Stability Assessment	
_	6.7 GROUND SHRINKAGE AND SWELLING POTENTIAL	
6	6.8 Tree Root Deformation	
7	ENGINEERING RECOMMENDATIONS	.19
7	7.1 General	.19
7	2.2 Building Site Development	.19
	7.2.1 Platform Development	
-	7.2.2 Fill Disposal	
	7.3 BEARING CAPACITY AND FOUNDATION DESIGN 7.4 SURFACE AND WASTEWATER DISPOSAL	
	7.5 TREE PLANTING	
	7.6 SITE MAINTENANCE	
8	OTHER CONSIDERATIONS	.23

14/06/2018

1 INTRODUCTION

Land Development & Exploration Ltd (LDE) was engaged to undertake a geotechnical investigation on the summit of Titirangi, Titirangi Drive, Gisborne. The site is currently occupied by the James Cook Observatory and historic World War II defence installations.

The main purpose of the investigation was to characterise the engineering geology of the site, determine the sites stability with a proposed lowering of the summit, and to provide geotechnical recommendations for its development.

In accordance with the GDC minimum requirements, consideration of the potential for settlement associated with earthquake-induced liquefaction was also an objective.

Figure 1: Location of site (Source: Google Earth).

2 SITE CHARACTERISTICS

The subject site is located on the summit of Titirangi, which is approximately 1.5km southsoutheast of the Gisborne City Central Business District, and up to some 140m above sea level (Figure 1). The hilltop forms a high point on the backbone of a prominent northwestsoutheast trending ridgeline. A spur leads off the side of the ridgeline down to the west towards the Eastland Port log yard and another down to the east towards the suburb of Kaiti. The upper reaches of gullies generally occupy the land between these features although manmade benches associated with a formation of the Titirangi summit carpark and Titirangi Drive occupy the western (seaward side) side of the summit. A bench formed in 1942 and increased in size again in 2015, extends around the northeastern, eastern and southern sides of the site (Figure 2, 3 & Figure 5). Steep cut slopes exist at the back of these benches.

Figure 2: Subject site (circled in yellow) and surrounding land (source: Tairawhiti Maps).

The James Cook Observatory is positioned at the peak of the summit, surrounded by a World War II gun emplacement recessed into the slope below and to the south-southeast; telecommunication poles to the northwest and northeast; a water supply tank, septic tank and its disposal field to the northeast; and a low-height retaining wall and grassed car-parking area on the observatory's seaward (western) side above Titirangi Drive and the Titirangi public carpark. A set of concrete steps lead from the carpark up to the main observatory entrance.

The observatory is surrounded by a grassed 2m to 8m wide low gradient zone between 4° and 10°. Beyond the gently sloping zone, the slopes have highly variable gradients ranging between 0° to in excess of 45°. The steepest and lowest gradients are generally associated with modification through earthworks and installation of steps, retaining walls and carparks (Figure 3, Figure 4 & Figure 5). The steeper side slopes of Titirangi below the summit area to the northeast and southeast have been planted densely in native trees and shrubs.

Figure 3: View south at summit. Forestry cut below to left and Titirangi Drive /Summit carpark at extreme right. Accessway up to observatory at bottom right.

Figure 4: View of observatory towards the east (towards suburb of Kaiti) from Summit Carpark. Gun emplacement is visible at the right of the photograph.

Figure 5: View north towards subject site. Forestry cut in front of and right of building. Gun emplacement and Titirangi Drive/Summit carpark below and left of observatory.

3 DEVELOPMENT PROPOSAL

We understand that the summit is proposed to be cut down to form a broad platform at a level equivalent to the highest point of the summit carpark (approximate elevation of 135m above sea level). Based on survey data, this would create approximately 2280m² of new flat area that excludes the existing summit carpark, all flat land associated with the formation of the forestry skid site to the southeast, east, and northeast of the observatory and the area occupied by the gun emplacement. The approximate extent of the new platform is illustrated in Figure 6.

With the cutting down of the site, the existing observatory, telecommunications towers, associated retaining walls and any in-ground installations (power supply, existing septic tank and disposal field, in-ground installations) will be removed. The gun emplacement is, however, scoped to remain. Whilst any future building proposal is yet to be confirmed, we understand that a one or two storey building will be located centrally within the newly created platform and possibly incorporate the historic gun emplacement into its design.

Based on the survey information, the proposed cut level will be up to some 2.0m higher than the bench present on the northeastern, eastern and southeastern side of the observatory, and approximately 0.5m to 1.0m higher than the level of the floor of the gun emplacement and the sloping carpark at the Titirangi Drive (northwest extent).

- 4 -

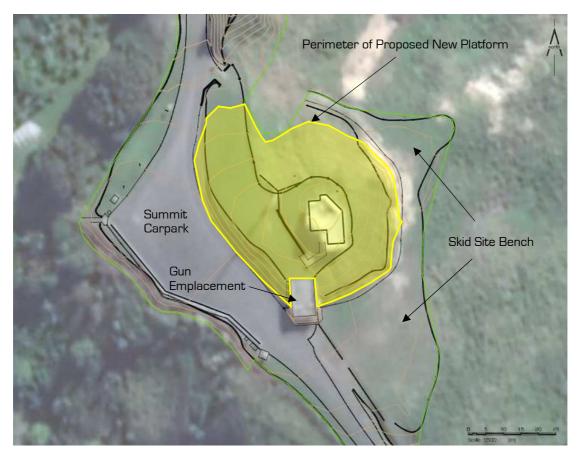


Figure 6: Survey plan of site showing approximate outline (yellow line) of flat area which will be created by cutting site down to level of summit carpark.

4 INVESTIGATION

A substantial amount of geotechnical investigation work was carried out in 2017 for the Gisborne District Council on this site. That work has been utilised as part of this assessment. Complimentary testing has also been carried out to target areas specific to the current proposal.

Our investigation of the site included the following work:

- 1. A desktop study of projects in the LDE database within the vicinity.
- 2. A review of historical aerial and oblique photographs dating back to 1942.
- 3. A review of pertinent geological maps and published and unpublished geological papers.
- 4. A walkover geomorphological appraisal.
- 5. One direct push machine borehole put down to 7m depth.
- Four electronic cone penetrometer tests (CPT's) put down to refusal (5m to 13m depth).
- Three machine excavated test pits (TP's) put down to depths between 0.5m and 1.4m next to the observatory. Measurements of the undrained shear strength were

taken at regular intervals within cohesive soils exposed within the test pits using a calibrated shear vane.

- 8. Seventeen 50mm hand augered boreholes put down to target depths of up to 5m. Measurements of the undrained shear strength were taken at 200mm intervals within cohesive soils encountered down through the boreholes using a calibrated shear vane.
- 9. Two dynamic penetrometer tests put down to up to 5m depth or refusal with measurements taken in 50mm increments.
- 10. The mapping of three geological exposures.
- 11. Slope profiling.
- 12. The development of geological cross sections through the site.
- Numeric stability analyses under elevated water levels and seismic loads.

The locations of the subsurface investigations are shown on the attached Geotechnical Investigation Plan. Logs of the CPT's, test pits, boreholes and penetrometer tests are attached as appendices.

The field work was completed in the autumns of 2017 and 2018.

GROUND CONDITIONS 5

5.1 General

The nature of the ground beneath the site is summarised below and in the appended cross sections. It is based on an integration of published and unpublished data, the geomorphology of the site, surface exposures of the underlying geology, and subsurface investigations carried out at discrete locations. The nature of the ground between the investigation points is inferred and may vary from that described. For details of the materials encountered and measurements of their respective strengths, please review to the appended investigation logs.

5.2 Geology

The 1:250,000 geological map of the region¹ shows the site as being underlain by the Pleistocene Age Mangatuna Formation overlying Miocene bedrock. The Mangatuna Formation unit has been categorised through more detailed study² as the Calhome Member,

Mazengarb C. and Speden I. (compilers) 2000: "Geology of the Raukumara area. Institute of Geological and Nuclear Sciences 1:250,000 geological map 6"

G. Neef, W.A. Watters & A.R. Edwards (1996) The Mid-Castlecliffian Mangatuna Formation of the Gisborne district, North Island, New Zealand, New Zealand Journal of Geology and Geophysics, 39:4, 551-558 14/06/2018 Project Ref: 13364 - 6 -

essentially comprising mudstone with intercalated tephra's, ignimbrite, paleosols and minor gravel.

5.3 Subsurface Conditions

5.3.1 Summary

Our investigations identified materials that are generally consistent with the detailed description of the Calhome Member, although no mudstone or paleosols were encountered. Non-engineered fill was also found to exist on top of these soils in a number of locations.

5.3.2 Non-engineered Fill, Topsoil & Rhyolitic Tephra

In summary, our investigations encountered a unit of non-engineered fill and topsoil ranging in thicknesses of between 0.2m and 1.2m immediately adjacent to the observation building. In general, the thicker fill units were found on the southern side of the observatory. In addition to this, the testing found that the fill material extends under the southern side of the observatory.

Away from the observatory, fill materials up 2.7m in thickness were identified on the outside edge of the slope above Titirangi Drive and up to 2.0m thick on the outside edge of the skid site bench. Fill up to 4.0m thick is expected behind the back wall of the gun emplacement . Only minor thicknesses of fill were found below the site to the north (back towards Gisborne City). Aerial photography also indicates a large amount of fill was placed to the west of the site along the seaward side of the summit carpark. This area is isolated from the subject site.

The fill material generally comprises mixtures of light brown to greenish brown clay and silty clay, black sandy silt and fine gravel with some foreign material (glass/nails and gravel). Undrained shear strength testing returned values as low as 46kPa, indicating a firm (low to moderate) strength.

The topsoil (generally buried beneath fill) comprises of sandy silt with some pumiceous sand. The undrained shear strength of the topsoil unit predominantly ranges between 60kPa and 100kPa indicating a moderate strength regime.

A 0.2m thick horizon of brown, loose pumice sand containing some silt was identified between 0.5m and 0.7m depth in machine borehole MBH1, put down some 6.0m south of the observatory.

5.3.3 Pleistocene Mangatuna Formation

Beneath the layers of non-engineered fill, topsoil and rhyolitic tephra the testing encountered a thick unit of the complex Pleistocene Mangatuna Formation. Our investigation indicates that this geology in general dips at a low angle of some 5° to the west/northwest, although localised near-surface bedding is indicated to slope south/southwest.

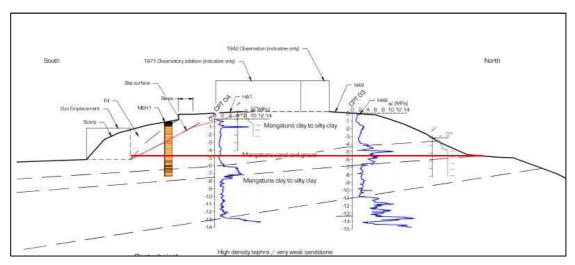
More specifically, the testing indicates that the summit is underlain by clay and silty clay ranging between 4m and 6m in thickness. Undrained shear strength testing within the unit generally returned values ranging between 20kPa and 200kPa, indicating a variable firm to hard strength regime. The lowest values, identified in exposures 1 to 3 at the forestry skid site rear slope, show that the unit reduces drastically in response to moisture. Furthermore, a set of shear surfaces (slip planes) dipping at 30° were found within this material at 2.6m and 2.8m depth within machine borehole MBH1.Based on surficial evidence of movement of footpaths and buildings It is likely that these dip to the south (towards the rear of the gun emplacement).

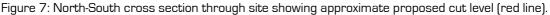
Beneath the clay, light brown to orange brown sand and gravel layers were identified between 4.0m and 6.5m depth beneath the hilltop. The material was observed to daylight the rear batter slopes of the forestry skid site on the inland side of the observatory, indicating the unit dips to the southwest. Dynamic penetrometer values ranging between 2 and 6 blows/50mm, and estimated SPT Neo values gained from the CPT's between 15 and 20, are indicative of a medium dense to dense regime.

Beneath the sand and gravel units the CPT's indicate that clay and silt-rich materials with relatively high undrained shear strength values ranging between 100kPa and 250kPa (very stiff to hard) prevail down to between 11m and 13m depth beneath the observatory site.

Beneath 11m to 13m depth, high density sandy silt and silty sand was encountered. Geological exposures showing cemented loess and/or rhyolitic tephra that correlate well with the depths of these units are located some 50m to the northeast and 120m to the northwest of the site. SPT equivalent N60 values generally ranging up from 20 (medium dense) to in excess of 50 (very dense) are indicative of a very weak rock.

5.3.4 Tertiary Bedrock


Tertiary bedrock was not encountered in the testing put down as part of this investigation. However, the LDE database and geomorphological evidence indicates that the Miocene rock exists at about 40m depth beneath the site and dips at between 28° and 35° degrees to the northwest.



5.3.5 Exposed Geology After Completion of Proposed Earthworks

With the cutting down of the site and remediation of soils around the gun emplacement, all non-engineered fill, topsoil, rhyolitic tephra and most of the upper clay rich Mangatuna Formation is expected to be removed from the footprint of the new cut platform. This includes the unit containing the slip surfaces behind the gun emplacement. A portion of the upper clay-rich unit, the sand and gravel unit and the top of a lower clay-rich unit (all part of the Mangatuna Formation) are expected to be exposed at cut level (Figure 11).

5.4 Soil Moisture Profile and Groundwater Conditions

The watertable was not encountered within 13m of the surface. No springs or any other evidence of the permanent watertable daylighting out of the hillside were identified. All drainage paths within the hillside about the site were dry and are only known to drain surface water. Therefore, for the purposes of the proposed development, the permanent water table is expected to exist at no less than 20m depth beneath the site and will not likely be encountered during the earthworks.

Following cutting down of the site, the moisture content of the near surface soils is expected to be higher during the winter months or extended periods of wet weather resulting in their saturation at times, especially where surficial ponding occurs above the clay-rich Mangatuna Formation soils. The extent of the wetting front will be dependent on the duration of the period of rainfall, but may extend down some 1m from the surface. The depth of surface wetting is expected to increase down-slope of the site to some 3m to 4m, especially within the fill materials. Complete saturation of the ridge is not expected given the low permeability of the clay-rich capping layers and the natural drainage path which the underlying sand and gravel layers are expected to provide.

5.5 Seismic Subsoil Category

We consider that the site is a Class C shallow soil site as defined by NZS 1170.5 (2004) "Structural Design Actions: Part 5: Earthquake actions – New Zealand". This based on the deep testing results, likely depth to bedrock and the determination of the site period in accordance with the methodology outlined in Section 3.1.3.7 of NZS1170.5

6 NATURAL HAZARDS AND GROUND DEFORMATION POTENTIAL

6.1 General

This section summarises our assessment of the natural hazards within the property as generally defined in the Building Act (2004) and the potential risk that these present to the building in terms of vertical and lateral ground deformation. This section also includes our assessment of ground beneath the building site which is outside the definition of "Good Ground" as defined by the Compliance Document for the NZ Building Code, NZS3604 (2011) "Timber Framed Buildings" and NZS4229 (2013) "Concrete Masonry Buildings Not Requiring Specific Engineering Design". This is any ground which could foreseeably experience movement of 25mm or greater for any reason including one or a combination of compressible ground, land instability, ground creep, subsidence, seasonal swelling and shrinking, frost heave, changing groundwater level, erosion, dissolution of soil in water, and the effect of tree roots.

6.2 Earthquake Hazards

6.2.1 Earthquake Shaking

The Ministry of Business Innovation & Environment released draft guidelines for Earthquake Geotechnical Engineering Practice in March 2016 for adopting a revised methodology of determining peak ground accelerations. These guidelines are now in common use.

In accordance with the guidelines and assuming future building importance level 2 structure standard design life of 50 years, and a Seismic Subsoil Category C, Ultimate Limit State (ULS) and Serviceability Limit State (SLS) peak ground accelerations (PGA) of 0.37g and 0.13g respectively have been determined for the site. The design earthquake magnitude (Mw) for Gisborne is 6.4.

6.2.2 Fault Line Surface Rupture

The 1:250 00 geological map¹ and GNS NZ Geology Webmap and Active Faults Database³ do not show any faults passing beneath or within the vicinity of the site.

A generally lineal feature extending northwest from the gun emplacement through the area now occupied by the summit carpark and down the side of a spur within the 1943 image (Figure 8) initially suggests the presence of a fault, however aerial imagery taken in 1942 and 1953 show the first 60m of the feature is man-made and the remainder to be the headscarp of moderately deep-seated landslip zone within a gully to the west (Figure 9). There were no other features indicative of a fault trace encountered in our assessment. We therefore consider that the surface fault line rupture risk to be low.

³ <u>http://data.gns.cri.nz/geology/</u>

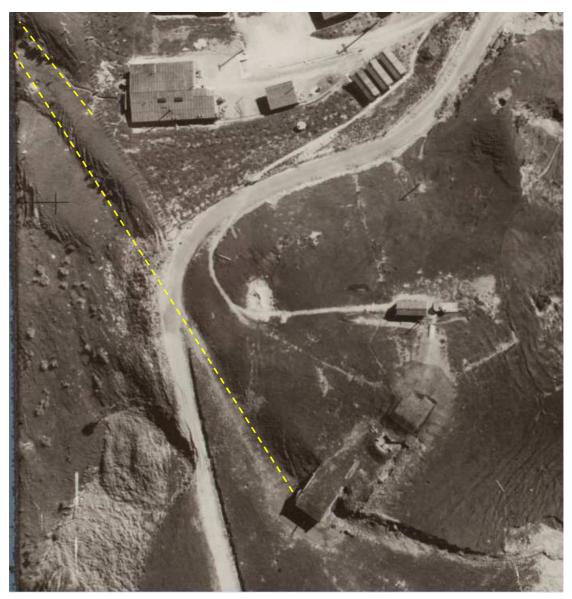


Figure 8: 1943 image showing lineal feature extending northwest of the gun emplacement (image supplied courtesy of Tairawhiti Museum).

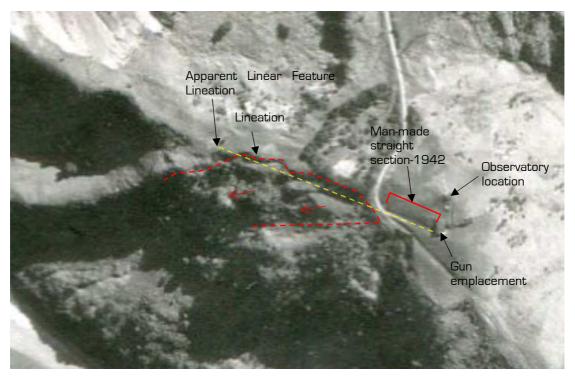


Figure 9: 1953 aerial image showing lineation to northwest of gun emplacement is combination of man-made earthworks and headscarp of isolated landslippage.

6.3 Liquefaction

Sandy or silty soils which are prone to liquefaction were not encountered beneath the site. Saturated conditions were also not encountered within 13m of the surface of the site (CPT holes were measured using a dip meter) and no evidence of saturated conditions (e.g. springs, or permanently running water courses) were encountered on the side slopes of the ridge. The bedrock is also expected to exist at 40m depth. Therefore, the conditions required for liquefaction are not present.

6.4 Consolidation Settlement

A considerable amount of damage to the existing observatory and associated footpaths is evident with a large amount considered to have occurred as result of consolidation of nonengineered fill. Detail of this damage is outlined in section 6.4.2 of our June 2017 Report.

With the proposed cutting down of the site, the majority of the of compressible ground which we consider is primary responsible for the damage to the Observatory, is expected to be removed. There is a possibility that some fill material will remain on the outside western edge (summit carpark side – above Titirangi Drive) of the new platform, as well as behind and around the sides of the gun emplacement. These volumes are however not expected to be significant and easily remediated (if required).

6.5 Slope Instability

6.5.1 Assessment Methodology

The stability of the site has been assessed based on existing evidence of movement within the observatory building, site testing results, the geomorphology of the surrounding slopes, and numerical stability analyses carried out using specialist geotechnical software on cross sections developed for the underlying engineering geology. The location of the cross section profiles are shown on the investigation plan and are presented in the attached appendices. The material strength parameters used in the analyses are provided in Table 1 below . These were generally derived from published and unpublished correlation charts and tables for the particular materials encountered in the investigation, with consideration for the behaviour of the materials with long-term loading, and their strength under likely worst-case moisture content levels.

The numerical analyses have been carried out on cross sections through the four most critical slopes to the north, east, south and southwest under likely worst-case groundwater conditions over the life of the structure (design conditions), prevailing groundwater conditions, and ULS and SLS seismic conditions. The soil strength parameters used in the analyses are presented in Table 1. For the design seismic scenarios the cohesive soils were modelled in the undrained shear strength values were used in the seismic models for the cohesive soil units.

Material	γ (kN∕ m³)	C' (kPa)	Ø' (°)	Su (kPa)
Non-engineered Fill	18	2	25	-
Firm Clay	19	3	24	25
Stiff To Very Stiff Clay	19 4		26	75
Very Stiff To Hard Clay	19	7	30	150
Medium Dense To Dense Sand & Gravel	20	1	35	-
High Density Cemented Tephra/Very Weak Sandstone	UCS = 1MPa	GSI =	= 60, IRC = 7	

Table 1: Soil Strength Parameters

Minimum factor of safety criteria used in the analyses were a Factor of Safety \geq 1.5 for design groundwater conditions and \geq 1.2 for extreme groundwater conditions, and \geq 1.0 for seismic conditions. The slope stability analysis summaries are attached to this report.

6.5.2 Geomorphological Assessment

The bony ridge beneath the summit and steep slopes adjacent to the hilltop site are indicative that the deeper slope-forming materials have relatively high strength and are fundamental stable.

Historic aerial photography indicates that a large amount of fill material was placed on the western edge of what is now the summit carpark as part of the 1942 site earthworks. An arcuate failure of the slope (Figure 8) in the fill materials is evident on the outside edge of what was at the time a roadway. Some ongoing soil creep is also occurring to the north of this fill zone (evident on site) resulting in the lateral movement of nib walls/edging along the western edge of the summit carpark. The proposed new build site is located at least 20m to the east of the historic fill/instability zone. zone. and is thus considered to be sufficiently isolated from it.

Historic and recent shallow seated landslippage has occurred on the natural steeper hillside slopes below the subject area, with the most recent occurring to the northeast on a very steep area of slope below the skid site bench. It is our opinion that instability is a result of saturation due to point discharge of surface water run-off over this zone combined with the low strength fill and surficial natural soils in this area. More competent material is exposed in the slip face and with the re-direction of surface water occurring , no further movement has occurred in this zone. This type of failure does however occur relatively frequently on Titirangi.

The cut slopes made into the hillside below the observatory to the southeast, east and northeast have been affected by erosion and shallow seated landslippage since their formation (Figure 10 & Figure 11). The cut slope has recessed back up to some 1m to 2m towards the observatory at the top of the slope.

Figure 10: Eastern cut slope below observatory shortly after completion in 2015.

Figure 11: Eastern cut slope in May 2017 showing cut face affected by erosion and shallow seated landslippage since original earthworks.

Following the proposed earthworks the cut slopes will be reduced to less than 2m in height. Despite this, based on the nature of the materials exposed and their inclination to instability it is considered likely that these slopes will continue to recess unless preventative measures are undertaken.

6.5.3 Numeric Stability Assessment

The numeric stability analyses incorporate the data from additional testing carried out in key areas and reflect the proposed cutting down of the site.

The physical evidence of movement and also zones of inherent stability are generally consistent with the findings of the numerical stability analyses.

With the cutting down of the site, a significant amount of the low strength soils, nonengineered fill and soils which have been affected by landslippage or subsidence will be removed. Based on the survey data, the lower part of the cut slope on the northeast, east and southeast sides of the site (slopes at back of skid site bench) will remain. These are expected to range up to 2.0m in height above the current skid level platform.

Under design ground water conditions, no slope movement is shown to occur (i.e. all FoS values >1.0). Factor of safety values less than 1.5 were however returned. Whilst the majority of these are isolated to the existing slope edge areas outside of the proposed new platform edge, surfaces extending up to 1.5m into the new platform are indicated where the cut slopes remain at the immediate edge of the new platform.

Under the worst possible ground water conditions considered to have the potential to develop, FoS values less than 1.2 were returned in all four slopes. Results are however similar to the existing groundwater model, in that surfaces only extend up to 2.5m into the new platform from its edge where cut slopes remain, and the remainder are isolated from the site.

Under both serviceability limit state (SLS) and ultimate limit state (ULS) seismic loads some yielding is shown to occur within the outside edges of the summit carpark and within the bench on the eastern (skid site) side of the site, however, no slip surfaces are shown to extend into the new proposed platform.

These potential movements have been taken into consideration in the engineering recommendations (Section 7) of this report.

Figure 12: Eastern slope model under extreme groundwater conditions showing potential failure zones on edges of existing skid site bench and proposed new platforms.

6.6 Erosion

The soils exposed in the cut slopes to the south and east of the site (areas where 1942 and 2015 earthworks were undertaken) have been affected by erosion due to over-steepening, surface run-off and lack of vegetation (Figure 11). Whilst the majority of these slopes will be removed as part of the site cut-down process, slopes up to 2m high will remain. It is our opinion that erosion will continue in these slopes without remedial works being undertaken.

6.7 Ground Shrinkage and Swelling Potential

Plastic soils can be subject to shrinkage and swelling due to soil moisture content variations which can result in apparent heaving and settlement of buildings, particularly between seasons.

The clay-rich soils expected to be exposed at the proposed cut level appear to be moderately to highly plastic soils with a liquid limit of about 70% based on their physical characteristics determined during the investigation. These material are considered moderately to highly reactive, or subject to shrink-swell movements in response to changing moisture regime. A seam of sandy gravel is also expected to daylight in parts of the platform. This material is expected to have a low shrinkage and swelling potential. Consideration of the soil reactivity, particularly where foundations will span over low-reactive materials and high-reactive

materials potentially causing significant differential settlement, will need to be taken into account for future development.

6.8 Tree Root Deformation

There are presently no trees within the vicinity of the proposed platform, which would have the potential to result in building settlement due to the uptake of water from the tree roots or ground heave from tree root growth. Care should be taken with any future plantings around the building as the clay-rich soils at this site are particularly susceptible to shrinkage via water uptake which can cause damage to adjacent building foundations

7 ENGINEERING RECOMMENDATIONS

7.1 General

It should be appreciated that the recommendations given below are based on the surface and subsurface conditions encountered at the time of the investigation. In addition to the possible variations in the subsurface conditions away from the investigation points within and around the site, changes to the site levels can have a dramatic effect on the recommendations given. Furthermore, cuts below the site can significantly jeopardise its stability and the recommendations made, unless an appropriate measure is put in place to restore the stability of the slope. Accordingly, we should be contacted prior to commencing any earthworks within the slopes to assess how this may affect the subject development. We should also be contacted immediately should the ground conditions encountered vary from that described in this report. The recommendations provided are one solution. Other solutions may be feasible, subject to review of this report by a suitably qualified geotechnical engineer.

7.2 Building Site Development

7.2.1 Platform Development

The cutting down of the site as proposed will significantly increase the area flat or low angle land considered to be suitable for building purposes. The current significant issues of land instability affecting the existing observatory building, associated footpaths, retaining walls and accessway are expected to be essentially eliminated. Some low strength fill/disturbed soil is still expected to remain behind and around the sides of the gun emplacement and along the western edge of the new platform. This is expected to be easily identified and remediated during site development.

The cut slopes which will remain at the northeastern, eastern, southern and western edges of the new platform, will remain at risk of localised landslippage and erosion. Options to address this are as follows:

- Isolate future buildings from the top edge of these slopes by 5 times the slope height and batter the intervening ground so it falls away from the building at allow gradient. Assuming a set-back distance of 10m from the top edge of these slopes, a large area of at least 700m² is expected to still be available for building purposes (Figure 13). Reduction of this set-back distance is expected to be easily obtained as most remnant slopes about the edge of the new platform will be less than 2m in height, this includes where linking up with the of rear of the gun emplacement may occur. With this option, it is expected to be able to be vegetated and readily maintained (mowable). This option will not require any engineering retaining installations.
- Construction of engineered retaining structures (e.g. timber pole retaining walls, gravity walls comprising gabion baskets or mechanically stabilised earth (MSE) walls) to support the cut slopes. Timber pole retaining walls are expected to be the most viable option as some of the supporting land below the batter slopes is considered to be at risk of failure. With the retaining walls, encroachment of buildings towards the slope edges is likely to be viable (if required).
- Deepening of foundations near slope edges (deep piling/underpinning of concrete floor foundations).
- Further cutting of the summit to marry the proposed cut into the existing lower bench surfaces.

Other options may be viable subject to the particular building proposal.

Figure 13: Aerial image showing approximate outline of proposed new platform if hill was to be cut down to approximately 98m above sea level and area of building zone available assuming a conservative 10m set-back from the edge of the building platform.

7.2.2 Fill Disposal

Large volumes of fill will need to be disposed of with the cutting down of the site. Placement of fill on the slopes around the site (apart from small volumes for landscaping purposes) is not recommend given the identified stability issues in the slopes further away from the summit.

7.3 Bearing Capacity and Foundation Design

Based on preliminary test data, a minimum ultimate, factored (ULS) and allowable bearing capacity of 300kPa, 150kPa and 100kPa is expected to exist within the natural soils at cut level. Higher bearing capacities are expected to be available. There is also potential that fill material will still remain around the sides and back of the gun emplacement that may need to be removed and replaced with engineered fill or have foundations designed to extend through the fill materials. These aspects will need to be confirmed at the building consent stage once the building proposal is known and the earthworks are complete.

For preliminary design purposes foundation depth extending to at least 0.7m beneath the platform level is expected to minimise the risk of foundation damage as a result of shrinkage

and swelling in the near surface soils. This can be refined as part of the building consent stage investigation.

7.4 Surface and Wastewater Disposal

Given the significant history of landslippage and slope movement on the steeper slopes surrounding the site and level of risk associated with discharging wastewater and stormwater onto them, we strongly recommend reticulation of these services to the bottom of the slope either to the east or west of the site, and connection into an existing stormwater of wastewater network. With reticulation, a degree of futureproofing is expected if expansion of buildings occurs, and valuable land is not taken up by treatment/attenuation systems or wastewater disposal fields. Furthermore, the natural soils around the site have low permeability, which presents a further difficulty for on-site wastewater disposal.

Disposal using soakage pits is not recommended due to the negative effect that this can have on the stability of the site. Given the clay-rich (low permeability) nature of the ground, they are also not expected to function well.

7.5 Tree Planting

A significant amount of native tree planting has occurred on the slopes surrounding the site, which we strongly support. Tree planting near buildings is however not recommend given the potential for damage to foundations through root growth and moisture uptake. For preliminary planning, a minimum horizontal distance of at least 1.0 times the mature height of the tree is recommended. With careful planning and installation of preventative measures such as root barriers, this set-back may be able to be reduced.

7.6 Site Maintenance

Prompt repair of plumbing leaks should be undertaken. Blocked, broken or faulty spouting should be attended to immediately.

The discharge of uncontrolled surface water over the site and surrounding slopes should be avoided at all costs.

Areas of slope movement and/ or erosion which may occur in the vicinity of the site should be assessed to determine the possible cause and implications that it may have on the stability of the building site. Remediation measures to limit the potential for further loss of land may need to be implemented to protect the value of the property.

8 OTHER CONSIDERATIONS

This report has been prepared exclusively for the Gisborne District Council with respect to the particular brief given to us. Information, opinions and recommendations contained in it cannot be used for any other purpose or by any other entity without our review and written consent. Land Development & Exploration Ltd accepts no liability or responsibility whatsoever for or in respect of any use or reliance upon this report by any third party.

This report was prepared in general accordance with current standards, codes and practice at the time of this report. These may be subject to change.

Opinions given in this report are based on visual methods, and subsurface investigations at discrete locations. It must be appreciated that the nature and continuity of the subsurface materials between these locations are inferred and that actual conditions could vary from that described herein. We should be contacted immediately if the conditions are found to differ from that described in this report.

This report should be read in its entirety to understand the context of the opinions and recommendations given.

Our analyses and opinions of the stability of the site have been based on the site geomorphology and ground conditions at the time of the investigation. Alteration of the slope gradients by cutting or filling could result in significant changes to the stability of the site which could be detrimental. We should be contacted immediately if there are any proposed changes to the slope profile, as well as the incidence of landslippage within the vicinity of the site.

For and on behalf of LDE Ltd

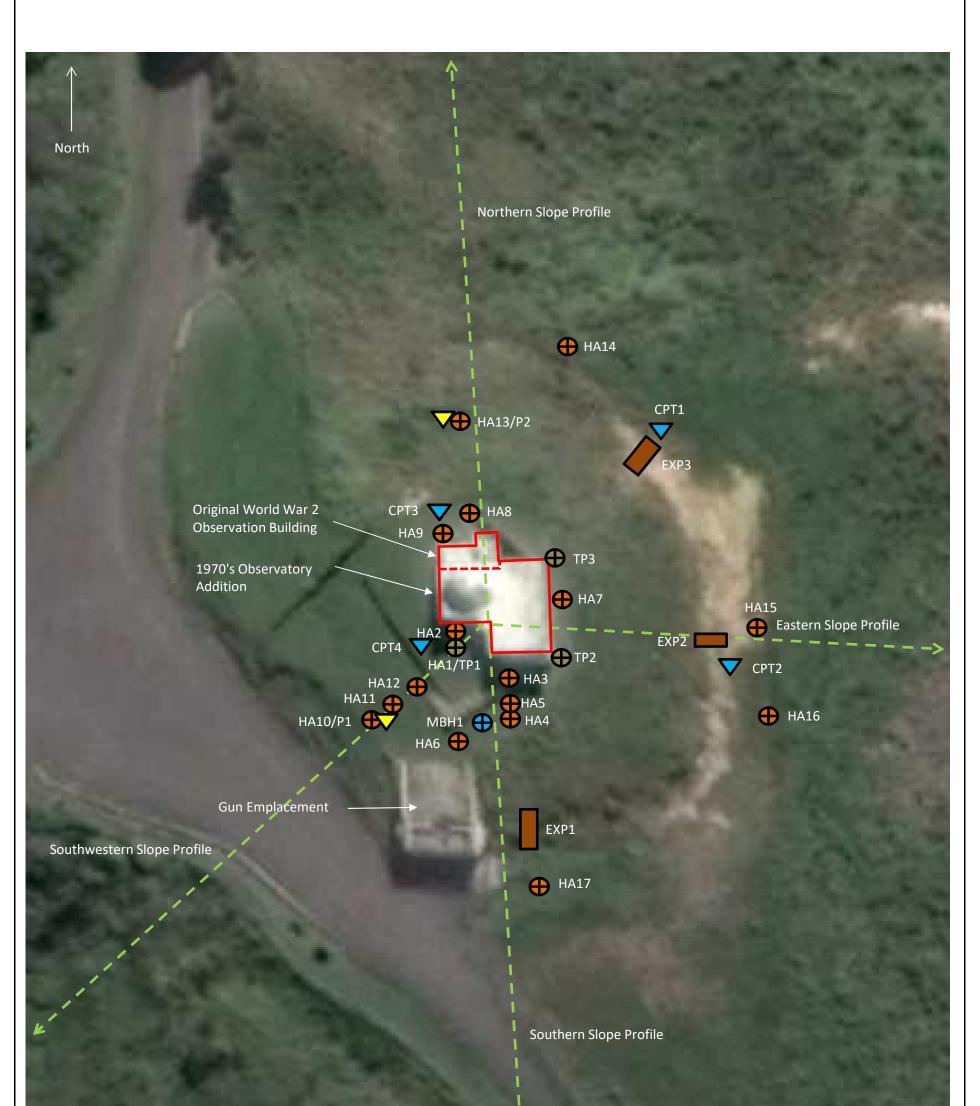
Report prepared by:

Ross Cumming MIPENZ Senior Engineering Geologist

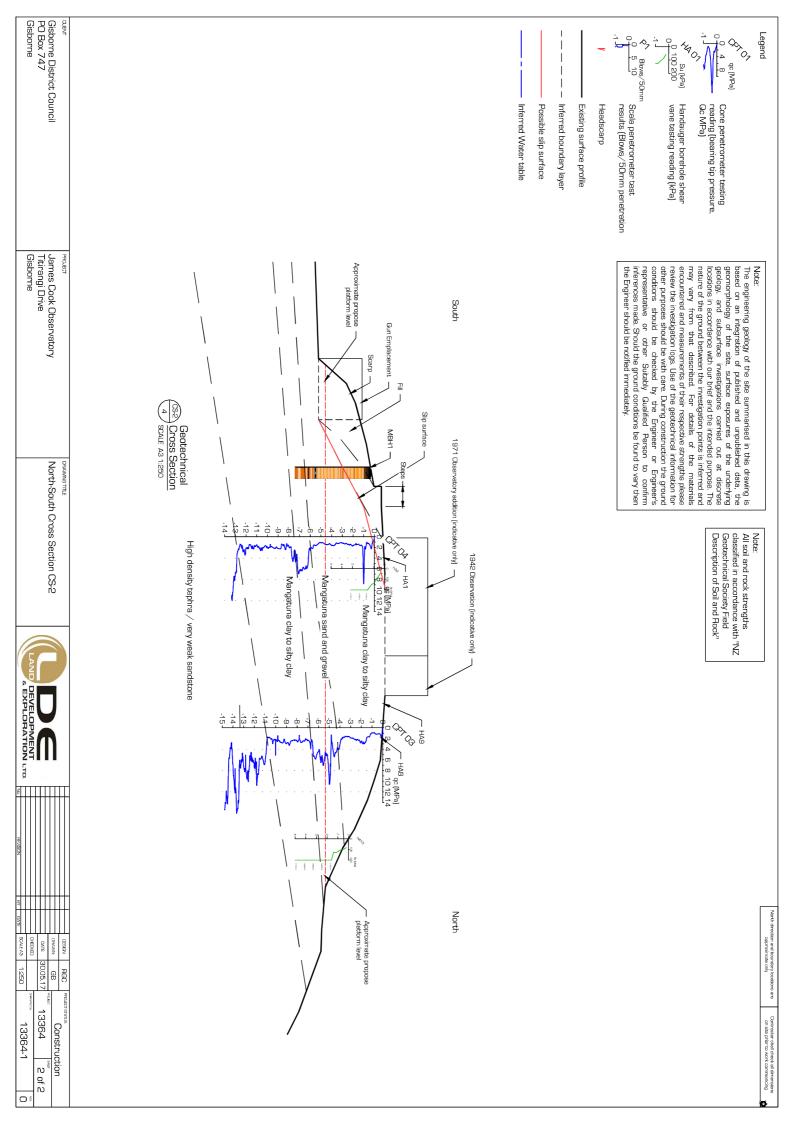
Report reviewed by:

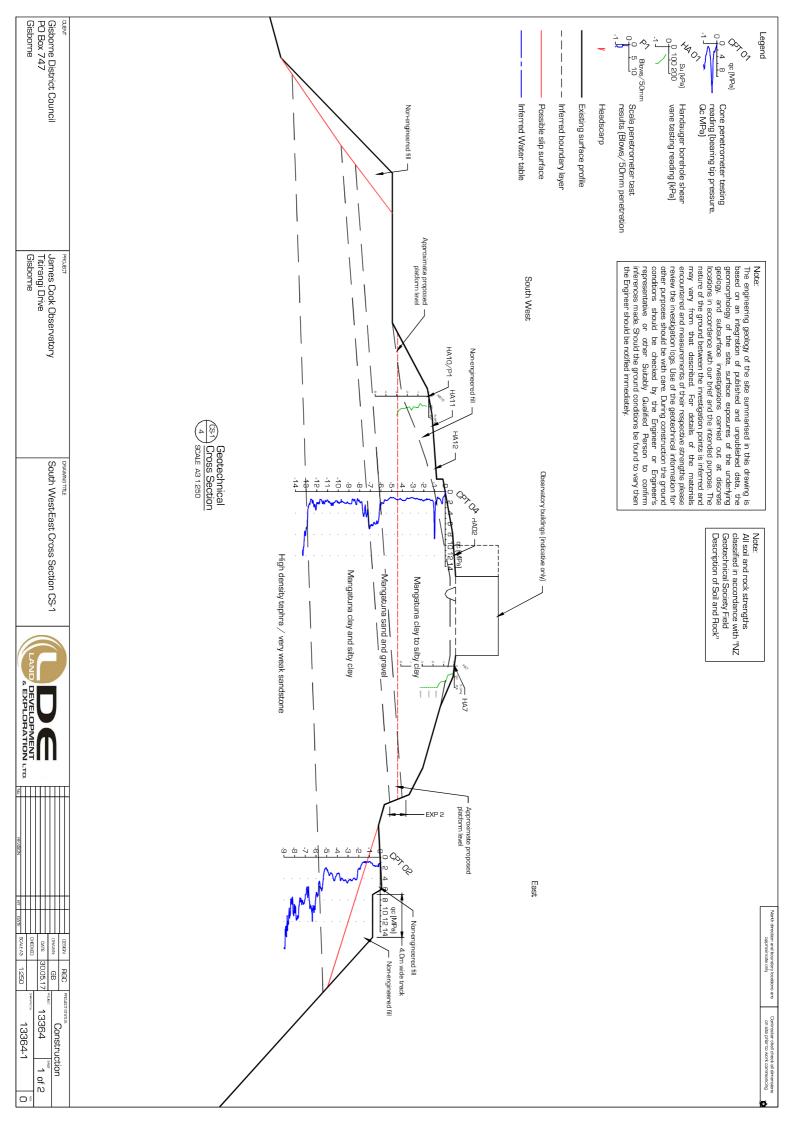
ollo

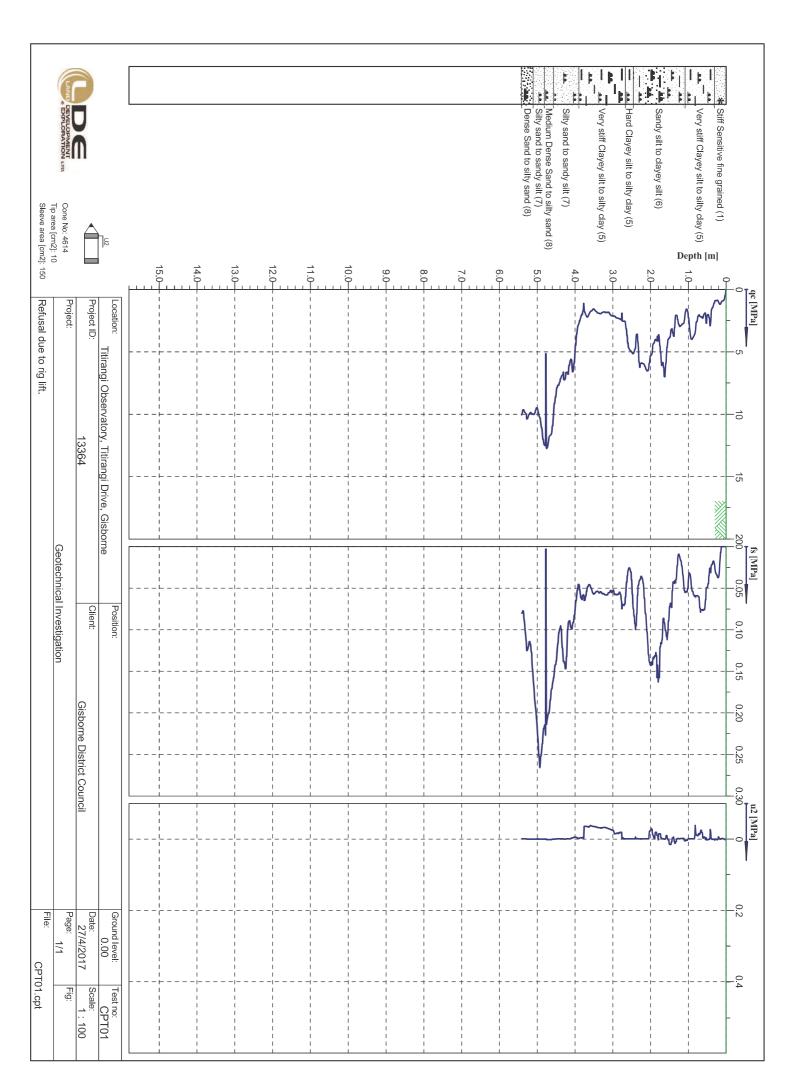
Joel Pollock Senior Engineering Geologist

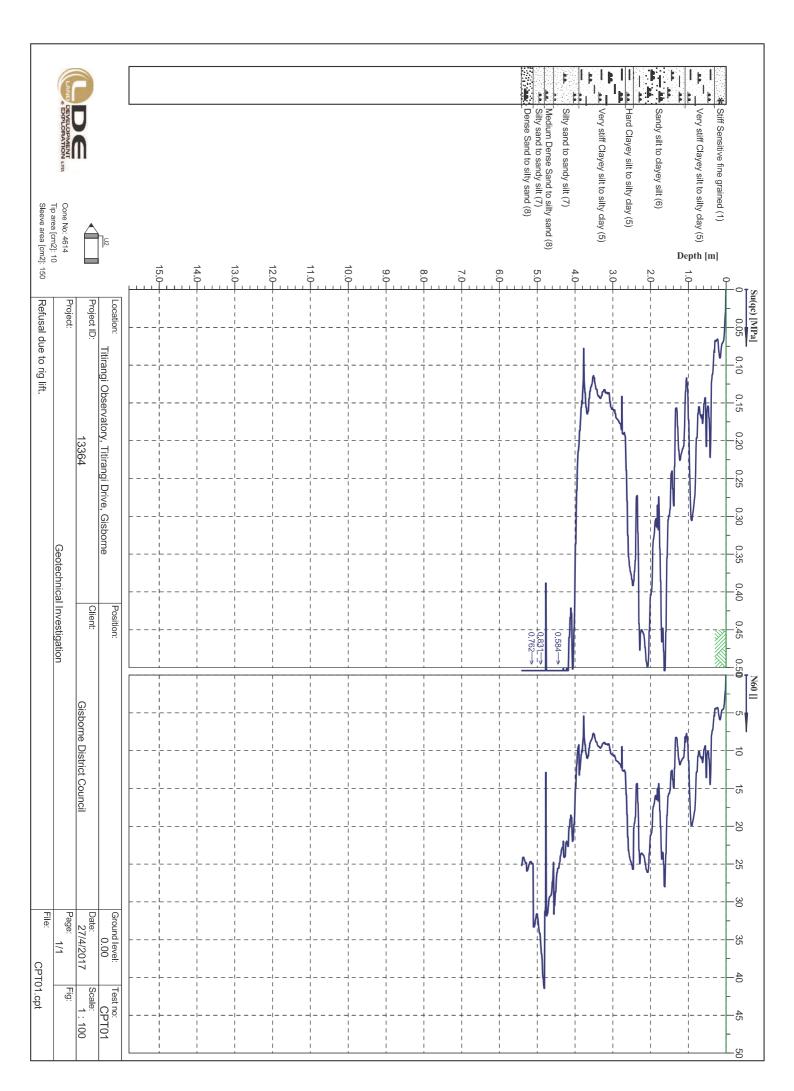

Report authorised by:

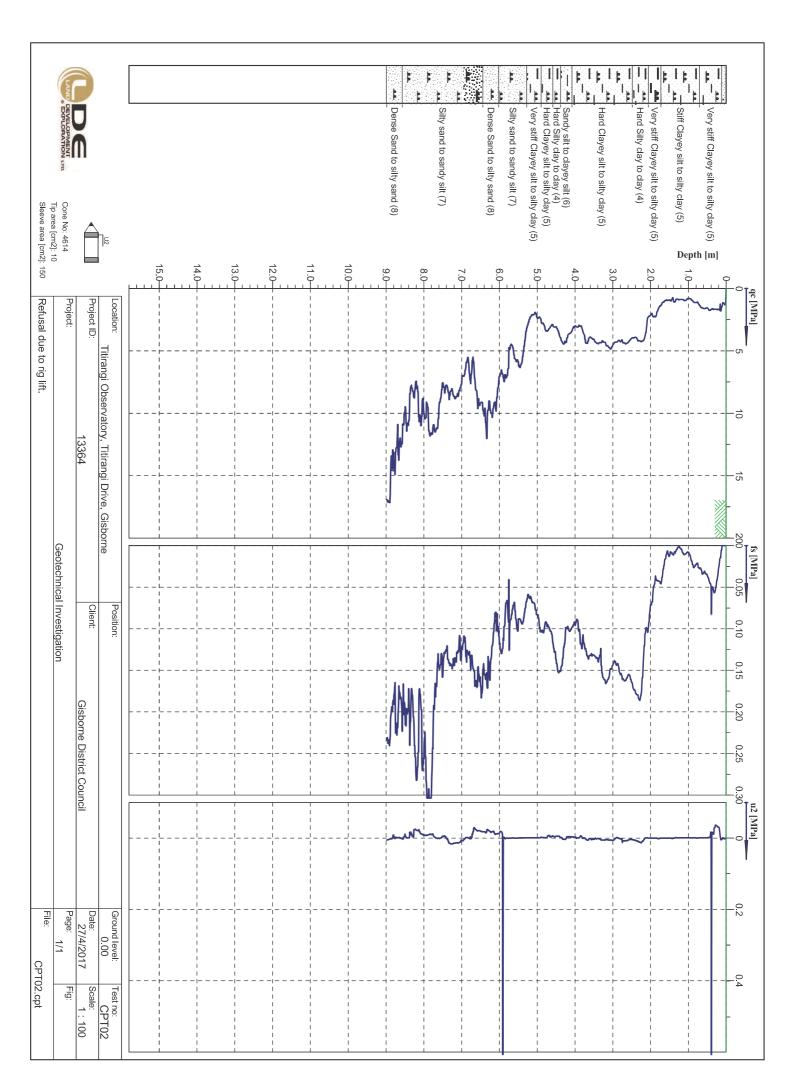
nhler

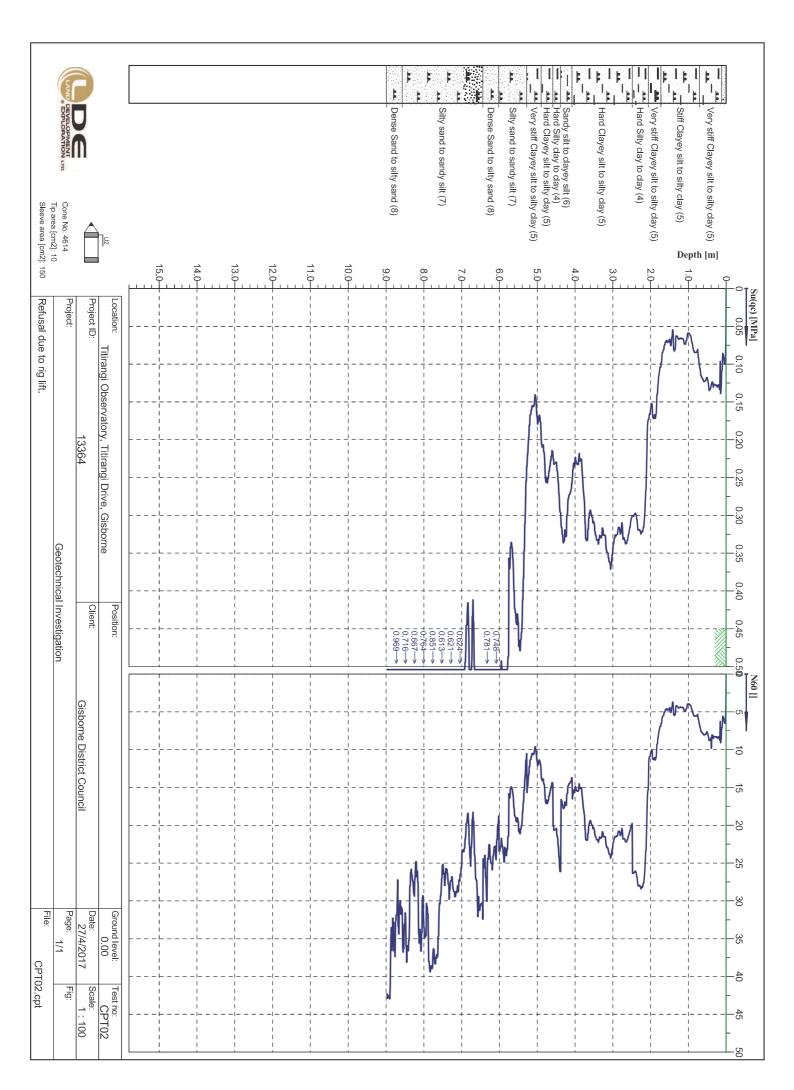

Georg Winkler MEngNZ, CPEng Engineering Geologist-Geotechnical Engineer

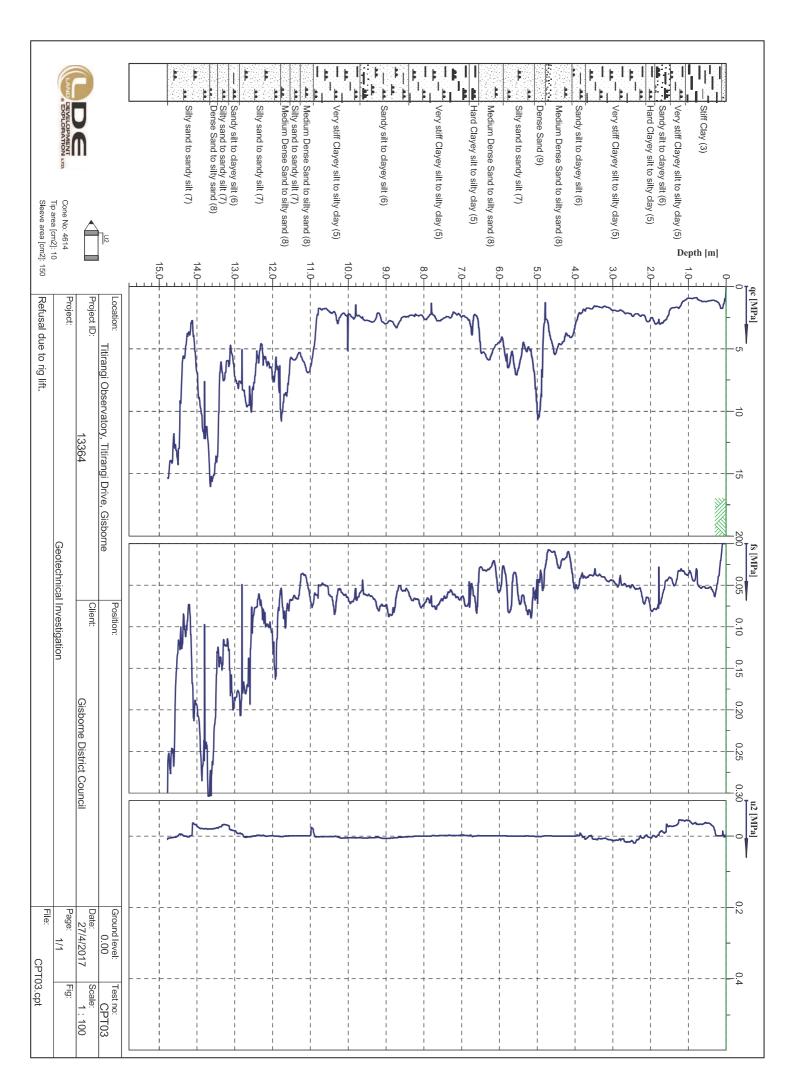

\\lde-ad01\Projects\13300 to 13399\13364 Titirangi Observatory Titirangi Drive Gisborne\April 2018 Full Development\GEOTECH\Report\13364 Titirangi Summit Cut-Down Geotechnical Investigation Report RGC 120618 NJP review.docx

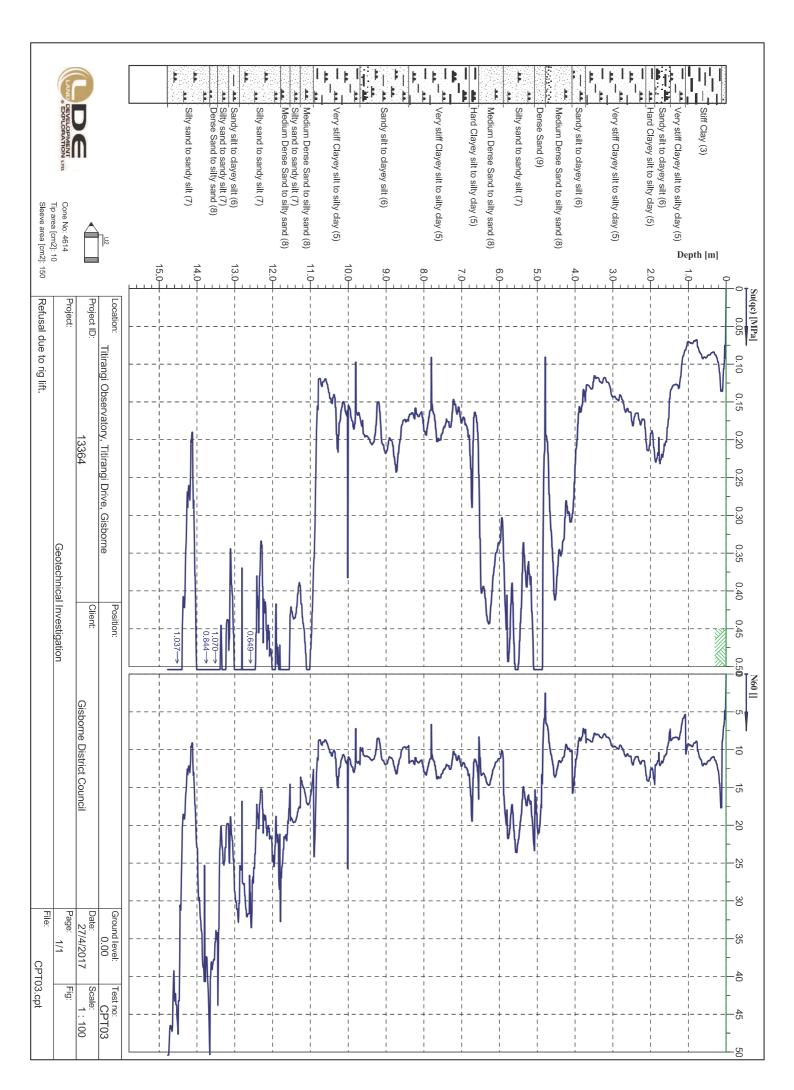

14/06/2018

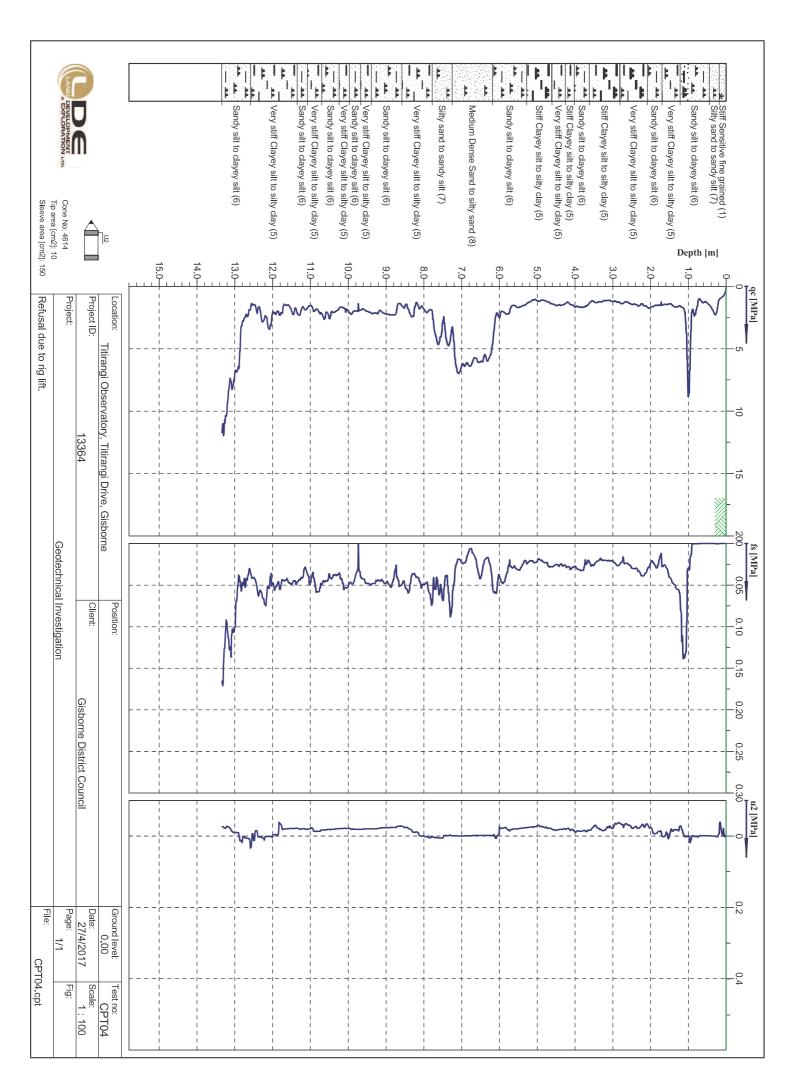


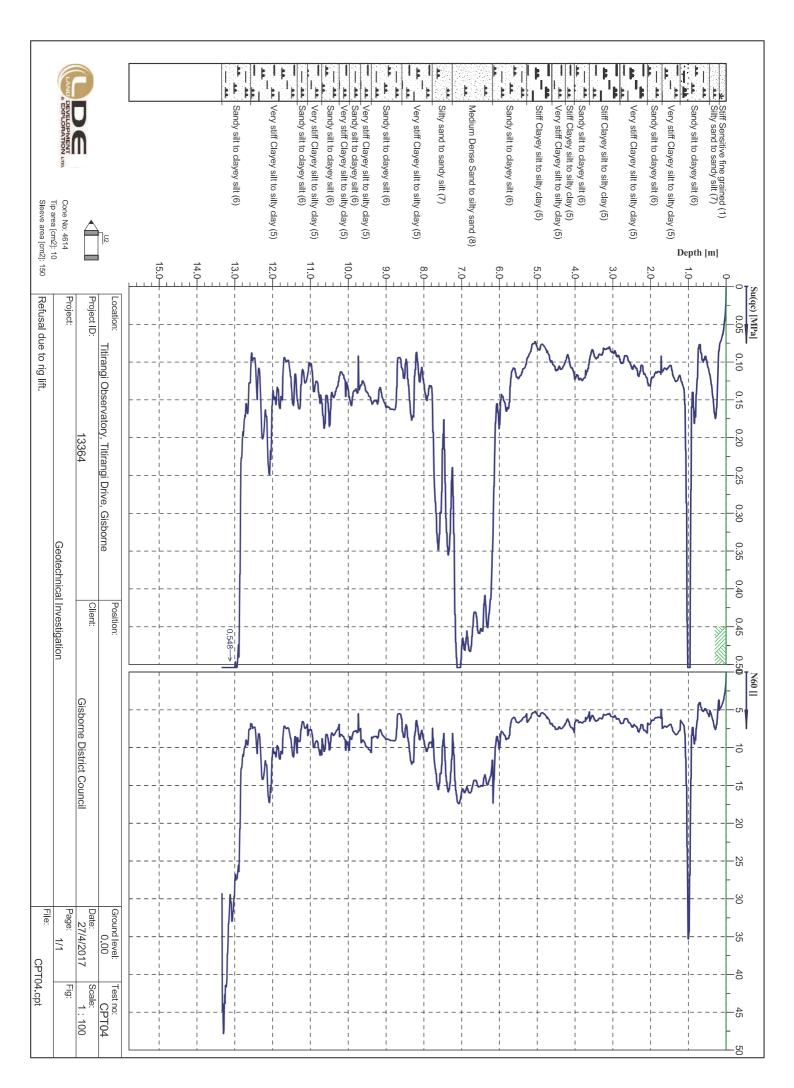

Om (Approx)	20m		
		DRAWN	RGC
	Titirangi Summit Development, Titirangi Drive, Gisborne	CHECKED	NJP
LAND DEVELOPMENT	Geotechnical Investigation Plan	DATE	11-Jun-18
GENT EONATION EID.		PROJECT	13364











		ND			BOREHOLE LO)G	во	REHOLE N	lo:	HA1	
Clier	nt: Gi	sborr	ne Dis	strict Council	Project: Geotechnical Investigation		LDE Pro	oject No:	13364	Ļ	
		catio		t Lot 3 DP5159, orne	Borehole Location: Refer to Site Investig	gation Plan	Hole sta Hole co	arted: mpleted:	27/04/ 27/04/		
Co-or	dinate	es:		mN mE	Drill method: 50mm handauger		Drilled Logged	by:	RGC RGC		
(u)	lic	Ire	lth		1			Undrained		trength	1
Depth (m)	Graphic	Moisture	Strength		Soil Description	Geology			(kPa)		
D 0.0	Ŭ	е м			and and fine well rounded gravel, dark grey to black,	Non-engineered fill	0	0 40 80) 120 '	160 200	240
0.1 0.2				firm, moist			0.2	🔶 7 🔶 46			
0.3				Sharp contact	And due to allow high data its contact (foundation)		0.4	♦ 10♦ 48			
0.4 0.5				End of borenole @ 0.	4m due to sharp high density contact (foundation)		0.6				
0.6 0.7							0.8				
0.8 0.9											
1.0							1				
1.1 1.2							1.2				
1.3 1.4							1.4				
1.5 1.6							1.6				
1.7							1.8				
1.8 1.9							2				
2.0 2.1							2.2				
2.2 2.3											
2.4							2.4				
2.5 2.6							2.6				
2.7 2.8							2.8				
2.9 3.0							3				
3.1 3.2							3.2				
3.3							3.4				
3.4 3.5											
3.6 3.7							3.6				
3.8							3.8				
3.9 4.0							4				
4.1 4.2							4.2				
4.3 4.4							4.4				
4.5							4.6				
4.6 4.7							4.8				
4.8 4.9											
5.0 5.1							5				
5.2							5.2				
5.3 5.4							5.4				
5.5 5.6							5.6				
5.7 5.8							5.8				
5.8 5.9											

	LAI)G	BOREHOLI	E No: HA2
Clie	nt: Gi	sborn	ne Dis	strict Council	Project: Geotechnical Investigation		LDE Project No	: 13364
	ect Lo ngi Su			t Lot 3 DP5159, orne	Borehole Location: Refer to Site Investi	gation Plan	Hole started: Hole completed	27/04/2017 I: 27/04/2017
	dinate		2.00	mN mE	Drill method: 50mm handauger		Drilled by:	RGC
٦ ب	υ	e	ج	ME	- -		Logged by:	RGC
Depth (m)	Graphic	Moisture	Strength		Soil Description	Geology	Undrain	(kPa)
ق 0.0	G	Ň	Б Б	SILT clavey some sa	Ind and fine well rounded gravel, dark grey to black,	Non-engineered Fill	0 40	80 120 160 200 240
0.1		IVI		firm, moist	na ana nne wen founded graver, dark grey to black,	Non-engineered i in	0.2 + 10	43
0.2 0.3							0.4 13	
0.4 0.5		М	F-St	CLAY, rare silt, light b	rown, firm to stiff, moist	Pleistocene Age Mangatuna Formation		
0.6			St	Stiff			0.6	* 76
0.7 0.8			VSt	Very Stiff			0.8	50 • 102
0.9 1.0							1	58 141
1.1 1.2				some orange brown p	atchas		1.2	10 147
1.3							1.4	120 🌪 174
1.4 1.5		D-M		dry to moist			1.6	X>200kPa
1.6 1.7			Н	Hard				
1.8							1.8	X>200kPa
1.9 2.0							2	X>200kPa
2.1 2.2							2.2	X>200kPa
2.3 2.4		D-M	Н	SILT, rare clay, orang	e brown, hard, dry to moist	-	2.4	X>200kPa
2.5				End of borehole @ 2.	5m		2.6	X>200kPa
2.6 2.7				Hole dry on completio Target depth reached			2.8	
2.8 2.9								
3.0 3.1							3	
3.2							3.2	
3.3 3.4							3.4	
3.5 3.6							3.6	
3.7 3.8							3.8	
3.9							4	
4.0 4.1								
4.2 4.3							4.2	
4.4							4.4	
4.5 4.6							4.6	
4.7 4.8							4.8	
4.9 5.0							5	
5.1							5.2	
5.2 5.3							5.4	
5.4 5.5								
5.6							5.6	
5.7 5.8							5.8	
5.9					Choor strength lines are indicative			

	LAI					DG	BOREHOLE No:	HA3
Clie	nt: Gi	sborr	ie Dis	strict Council	Project: Geotechnical Investigation		LDE Project No: 13364	
Proje Titira	ect Lo ngi Su	catio immit,	1: Par Gisb	t Lot 3 DP5159, orne	Borehole Location: Refer to Site Invest	igation Plan	Hole started: 27/04/ Hole completed: 27/04/	
Co-o	rdinate	s:		mN mE	Drill method: 50mm handauger		Drilled by: RGC Logged by: RGC	
pth (m)	aphic.	oisture	rength		Soil Description	Geology	Undrained Shear S (kPa)	trength
(w) under 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.3 3.4 3.5 3.6 3.7 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.1 4.4 4.5 4.4 4.5 4.4 4.5 4.4 4.5 4.4 4.5 4.4 4.5 4.5	Graphic	Moisture		stiff, moist	ell rounded- fine), sand, and clay, black to light brown edium to coarse pumiceous sand, dry to moist ilt, light brown to light orange brown, plastic, very stiff	n, Non-Engineered Fill	(kPa)	trength 60 200 240 31 441 441 447 151 441 32 31 441 441 447 441
5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8							5 5.2 5.4 5.6 5.8	

		ND				DG	BOR	EHOLE N	o :	HA	4
Clier	nt: Gi	sborr	ie Dis	strict Council	Project: Geotechnical Investigation		LDE Proj	ect No:	133	64	
Proje Titirar				t Lot 3 DP5159, orne	Borehole Location: Refer to Site Invest	igation Plan	Hole star Hole com			4/2017 4/2017	
Co-or				mN mE	Drill method: 50mm handauger		Drilled by Logged b	y:	RGC		
(Ľ	hic	ure	gth					ndrained	Shear		th
Depth (m)	Graphic	Moisture	Strength		Soil Description	Geology	0	40 80	(kPa)	160 2	00 240
0.0				SILT, some gravel (w stiff, moist	ell rounded- fine), sand and clay, black to light brown	, Non-Engineered Fill	0		20		
0.1 0.2				End of borehole @ 0	.2m due to sharp high density contact		0.2				
0.3 0.4				Likely concrete (pote	ntially hollow)		0.4				
0.5 0.6							0.6				
0.7 0.8							0.8				
0.9							1				
1.0 1.1							1.2				
1.2 1.3							1.4				
1.4 1.5							1.6				
1.6 1.7											
1.8 1.9							1.8				
2.0							2				
2.1 2.2							2.2				
2.3 2.4							2.4				
2.5 2.6							2.6				
2.7 2.8							2.8				
2.9							3				
3.0 3.1							3.2				
3.2 3.3							3.4				
3.4 3.5											
3.6 3.7							3.6				
3.8 3.9							3.8				
4.0							4				
4.1 4.2							4.2				
4.3 4.4							4.4				
4.5 4.6							4.6				
4.7 4.8							4.8				
4.9							5				
5.0 5.1							5.2				
5.2 5.3							5.4				
5.4 5.5											
5.6 5.7							5.6				
5.8 5.9							5.8				

		ND)G	BOREHOLE No: HA5
Clier	nt: Gi	sborn	e Dis	strict Council	Project: Geotechnical Investigation		LDE Project No: 13364
	ct Lo ngi Su			t Lot 3 DP5159, orne	Borehole Location: Refer to Site Investig	gation Plan	Hole started: 27/04/2017 Hole completed: 27/04/2017
Co-or	dinate	s:		mN mE	Drill method: 50mm handauger	1	Drilled by:RGCLogged by:RGC
Depth (m)	Graphic	Moisture	Strength		Soil Description	Geology	Undrained Shear Strength (kPa)
Ideg 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.1 1.1 1.3 1.4 1.5 1.6 1.7 1.8 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.4 4.5 5.1 5.2 5.3			VL Vst St	light brown, very loose SILT, contains patche stiff SILT, rare fine well roo	silt and clay, rare fine brick fragment, black, grey and e, moist s of light brown clay, black, very stiff, moist inded gravel and sand (coarse beach), stiff, wet it, light brown to light orange brown, plastic, stiff, stiff,		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5.4 5.5 5.6 5.7 5.8 5.9							5.4

		ND			BOREHOLE LC	G	BOREHOLE	lo: HA6
Clier	nt: Gi	sborn	ie Dis	strict Council	Project: Geotechnical Investigation		LDE Project No:	13364
	ect Lo ngi Su			t Lot 3 DP5159,	Borehole Location: Refer to Site Investig	ation Plan	Hole started: Hole completed:	27/04/2017 27/04/2017
	dinate		0.00	mN	Drill method: 50mm handauger		Drilled by:	RGC
Ê	U	e	٩	me			Logged by:	RGC
Depth (m)	Graphic	oistur	rengt		Soil Description	Geology	Undrained	l Shear Strength (kPa)
	Ū			0	10	No	0 40 8	0 120 160 200 240
0.0 0.1		IVI		cavities, grey and blac	ck, very loose, moist	Non-engineered fill	0.2	
0.2 0.3								
0.4			e t		0.4			
0.5 0.6							0.6	
0.7 0.8							0.8	
0.9 1.0							1	
1.1							1.2	
1.2 1.3							1.4	
1.4 1.5								
1.6							1.6	
1.7 1.8							1.8	
1.9 2.0							2	
2.1 2.2							2.2	
2.3							2.4	
2.4 2.5							2.6	
2.6 2.7								
2.8 2.9							2.8	
3.0							3	
3.1 3.2							3.2	
3.3 3.4							3.4	
3.5							3.6	
3.6 3.7							3.8	
3.8 3.9								
4.0 4.1							4	
4.2							4.2	
4.3 4.4							4.4	
4.5 4.6							4.6	
4.7							4.8	
4.8 4.9							5	
5.0 5.1								
5.2 5.3							5.2	
5.4							5.4	
5.5 5.6							5.6	
5.7 5.8							5.8	
5.9								

		DE & E)	VELOPMENT			BOREHOLE	No: HA7
ent: (Gisboı	ne Di	strict Council	Project: Geotechnical Investigation		LDE Project No:	13364
angi S	Summi	on: Pa t, Gisb		Borehole Location: Refer to Site Inve	stigation Plan	Hole started: Hole completed	
ordina	tes:		mN mE	Drill method: 50mm handauger		Drilled by: Logged by:	RGC RGC
Graphic	Moisture	Strength		Soil Description	Geology	Undrain	ed Shear Strength (kPa)
						0 40	80 120 160 200 2
	D-N	1 St	SILT and clay, mixed	black and light brown, stiff, dry to moist	Non-engineered Fill/Disturbed Topsoil	0.2 20	68
	D-N	1 St	CLAY, rare silt and fin	e pumiceous sand, plastic, stiff, dry to moist	Pleistocene Age Mangatuna Formation	0.4 30	
		VSt	very stiff			0.8	55 1 41 79 1 44
						1.2	 79 93 161
	- M	н.	fine white pumiceous moist, hard	sand patch		1.6	X>200kPa
						1.8	X>200kPa
						2.2	X>200kPa
						2.4	X>200kPa
						2.8	X>200kPa
						3.2	X>200kPa
			fine very weak shell fr	agment		3.4	X>200kPa
			End of borehole @ 4r	n depth		3.8	X>200kPa
			Hole dry on completic Target depth reached	n .		4.2	
						4.6	
						4.8	
						5.2	
						5.6	
						5.8	

		ND			BOREHOLE LO)G	во	REHOL	E No:	HA	8
Clier	nt: Gi	sborr	ie Dis	strict Council	Project: Geotechnical Investigation		LDE Pro	oject No): 13	364	
Proje Titirai				t Lot 3 DP5159, orne	Borehole Location: Refer to Site Investig	gation Plan	Hole sta Hole co			/04/2017 /04/2017	
Co-or	dinate	es:		mN mE	Drill method: 50mm handauger		Drilled I Logged	by:	RC RC		
(m)	<u>ic</u>	Ire	lth		ł				ned Shea		ath
Depth (m)	Graphic	Moisture	Strength		Soil Description	Geology			(kPa)		
م 0.0	•	2 M		SILT some clay, light t	brown with black patches, very stiff, dry to moist	Non-engineered fill	0 -	0 40	80 120	0 160 :	200 240
0.1 0.2		м	VSt	CLAY. rare to some si	ilt, light brown to greenish brown, plastic, very stiff,	Pleistocene Age Mangatuna	0.2 -	• 20	•	118	
0.3				moist		Formation	0.4				
0.4				End of borehole @ 0.			0.6				
0.6 0.7				Hole dry on completio Target depth reached			0.8				
0.8 0.9											
1.0 1.1							1 -				
1.2							1.2 -				
1.3 1.4							1.4				
1.5 1.6							1.6				
1.7 1.8							1.8				
1.9 2.0							2				
2.1							2.2				
2.2 2.3							2.4				
2.4 2.5											
2.6 2.7							2.6				
2.8 2.9							2.8				
3.0							3 -				
3.1 3.2							3.2				
3.3 3.4							3.4				
3.5 3.6							3.6				
3.7 3.8							3.8				
3.9							4 -				
4.0 4.1							4.2				
4.2 4.3											
4.4 4.5							4.4 -				
4.6 4.7							4.6				
4.8							4.8				
4.9 5.0							5 -				
5.1 5.2							5.2				
5.3 5.4							5.4				
5.5							5.6				
5.6 5.7							5.8 -				
5.8 5.9							0.0				*****

		ND			BOREHOLE LO	DG	BORE	HOLE N	lo: HA	\9
lient	: Gis	sborn	e Dis	trict Council	Project: Geotechnical Investigation		LDE Proje	ct No:	13364	
itirang	gi Sur	mmit,			Borehole Location: Refer to Site Investig	gation Plan	Hole start	pleted:	27/04/2017 27/04/2017	
o-ordi	inates	s:		mN mE	Drill method: 50mm handauger		Drilled by Logged by		RGC RGC	
Depth (m)	Graphic	Moisture	Strength		Soil Description	Geology	Ur	drained	l Shear Strenç (kPa)	gth
	ບັ					T	0	40 80	0 120 160 2	200 240
).0).1		М			<, very stiff, dry to moist	Topsoil	- 0.2	♦ 24 ♦	71	
).2).3		М	VSt	CLAY, rare to some si moist	lt, light brown to greenish brown, plastic, very stiff,	Pleistocene Age Mangatuna Formation				
).4).5							0.4	+ 55	5 🔶 131	
0.6							0.6	-	80	174
).7).8							0.8	•	69 🔶 1	69
).9 1.0			н	dry to moist, crumbly,	hard		1		X>200k	Pa
1.1 1.2							1.2		X>200k	Pa
1.3							1.4		X>200k	Pa 🕂
1.4 1.5							1.6		X>200k	Pa
1.6 1.7				pocket of fine white pu	imiceous sand		1.8			
1.8 1.9									X>200k	
2.0							2		X>200k	(Pa
2.2							2.2		X>200k	Pa
2.3 2.4							2.4		X>200kl	Pa
2.5 2.6				End of borehole @ 2.5 Hole dry on completion			2.6		X>200k	Pa
2.7 2.8				Target depth reached			2.8			
2.9 3.0							3			
3.1							3.2			
3.2 3.3							3.4			
3.4 3.5										
3.6 3.7							3.6			
3.8							3.8			
3.9 4.0							4			
1.1 1.2							4.2			
1.3 1.4							4.4			
4.5							4.6			
1.6 1.7							4.8			
4.8 4.9										
5.0 5.1							5			
5.2							5.2			
5.3 5.4							5.4			
5.5 5.6							5.6			
5.7 5.8							5.8			
.9					Notes: Shear strength lines are indicative					

				PLOPMENT	BOREHOLE LC		BOREHOLE No: HA10				
ient	t: Gis	born	e Dis	trict Council	Project: Geotechnical Investigation		LDE Project No: 13364				
			: Pari Gisbo	t Lot 3 DP5159, orne	Borehole Location: Refer to Site Investig	gation Plan	Hole started: 27/04/2017 Hole completed: 27/04/2017				
	inates			mN	Drill method: 50mm handauger		Drilled by: AHM				
ε		e	٩	mE			Logged by: AHM				
(iii) indan	Graphic	Moisture	Strength		Soil Description	Undrained Shear Strength (kPa) 0 40 80 120 160 200					
.0		М			m angular gravel, dark brownish black, moderately	Topsoil Fill					
.1 .2		м		organic, moist SILT, clayey, light yello	wish brown with dark brownish black and slight	Non-Engineered Fill	0.2				
.3				orange mottling, plasti	c, moist		● 39 ● 94				
.4 .5				orange mottling more	frequent		42				
.6							0.6				
.7 .8							0.8				
.9 .0		ŀ	VSt	very stiff			1				
.1							1.2				
2 3				slight dark brownish bl	ack mottling						
4							1.4				
5				slight orange mottling			1.6				
7							1.8 54 131				
8 9							2 41 99				
.0							♦ 50 ♦ 105				
2							2.2				
3							2.4				
5							2.6				
6 7		м	VSt	SILT, clayey, light yello	wish brown with slight orange mottling, plastic moist	Pleistocene Age Mangatuna	2.8				
.8 .9						Formation	🔶 72 🔶 134				
.0		M-W		moist to wet			3 6 58 181				
1 2				End of borehole at 3.1 Borehole dry on comp	m due to borehole closure letion		3.2				
3				Penetrometer test P1	put down in base of hole		3.4				
4 5											
6 7							3.6				
8							3.8				
9 0							4				
1							4.2				
2 3											
4							4.4				
5 6							4.6				
7 8							4.8				
8 9							5				
0 1											
2							5.2				
.3 .4							5.4				
5							5.6				
6											
8							5.8				

0.0 M St. T. det boundet black, moder wy oppert, mode Impact A (March 11) 0.2 1 1 ChAY, Sty (get path and in the boundst black path new on any get path and the boundst black path new on any get path and the boundst black path new on any get path and the boundst black path new on any get path and the boundst black path new on any get path and the boundst black path new on any get path and the boundst black path new on any get path new on any get path and the bound path on any get path and the boundst black path new on any get path and the boundst black path new on any get path and the boundst black path new on any get path and the boundst black path and the boundst black path new on any get path and the boundst black path and the boundst	AN	ID S				OG	во	REHO	LE No):	HA	11
Image Burnel Gubbon Borrelote Location: Refer to Site Investigation Plan Hole completes: 100/2017 Image Burnel Burnel Borrelote Location: Refer to Site Investigation Dillite departed by: Additional Borrelote Location: Refer to Site Investigation Dillite departed by: Additional Borrelote Location: Refer to Site Investigation Dillite departed by: Additional Borrelote Location: Refer to Site Investigation Dillite departed by: Additional Borrelote Location: Refer to Site Investigation Dillite departed by: Additional Borrelote Location: Refer to Site Investigation Dillite departed by: Additional Borrelote Location: Refer to Site Investigation Borrelote Borrel	Gist	born	e Dis	strict Council	Project: Geotechnical Investigation			-	lo:			
Image Print instructure, Dolumin factor coupler, moles Called Called Called 0 <td0< th=""><th></th><th></th><th></th><th></th><th>Borehole Location: Refer to Site Inves</th><th>tigation Plan</th><th>Hole co</th><th>mplet</th><th>ed:</th><th></th><th></th><th></th></td0<>					Borehole Location: Refer to Site Inves	tigation Plan	Hole co	mplet	ed:			
0.0 M 3.1. Tuck transmit black, modern black, modern black, broken with stark broken in the stark broken in t	nates:	:			Drill method: 50mm handauger							
0.0 M 3.1. Tuck transmit black, modern black, modern black, broken with stark broken in the stark broken in t	apnic	isture	ength		Soil Description	Geology		Undra			Strenç	jth
0.0 M SLT, dark to overwish black, moderably organiz, mostil Uncelose first 0.2 1 V CLAY site, light velocity black moderably organize, mostil Uncelose first 0.2 1 V CLAY site, light velocity black moderably organize, mostil Uncelose first 0.2 1 V CLAY site, light velocity black moderable digits or ange Non-Engineerid Fil 0.2 1 V SLT, dark bownish black with sight forw patches and sight orange Build Ongraal Toppool 1 1 V SLT, dark bownish black with sight forw patches and sight orange Build Ongraal Toppool 1 1 V SLT, dark bownish black with sight forw patches and sight orange Build Ongraal Toppool 1 1 V SLT, dark bownish black with sight forw patches and sight orange Build Ongraal Toppool 1 1 V SLT, dark bownish black with sight forw patches and sight orange 1 1 1 V SLT, dark bownish black with sight forw patches 1 1 1 V SLT, dark bownish black with sight forw patches 1 1	פֿ	Mo	Str					0 40	80	120	160 2	200 2
CLAY: End profiles, plant atoms at how with and it bown at back patches and patches and interception of Pit CLAY: End profiles, plant, most orange moting more frequent orange moting more frequent CLAY: End plant, most End plant, most CLAY: End plant, most End plan												
a a 0.4 0.4 carage matting nore frequent 0.6 0.8 1 2 M Shift Task bounds back with lyst bown patches and slight carage matting, plastic, mail Plastic day and the slight with lyst bown patches and slight carage 1.2 1 N Shift Task bounds back with lyst bown patches and slight carage Excrete Age Mangatana 1.4 1 N CLV, slight yillowak boom with carage matting, plastic, mail Plastic day and carage 1.4 1 N CLV, slight yillowak boom with carage matting, plastic, mail Plastic day and carage 1.8 2 CLV, slight yillowak boom with carage matting, plastic, mail Plastic day and carage 1.8 2 CLV, slight yillowak boom with carage days fragment							0.2 -					
4 0		IVI				Non-Engineered Fill						
A 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1							0.4					
N SkiT Zah bornich bek wit light brown pables and sight orange moting, paste, most Sured Chiginal Topool 12 M SkiT Zah bornich bek wit light brown pables and sight orange moting, paste, most Pelstocene Age Mangatura 14 CAX sity, light yellowish brown who orange moting, paste, most Pelstocene Age Mangatura 14 End d borehole at 15m, target depth reached 16 14 Borehole dry on completion 18 2 24 24 24 25 24 24 26 28 3 36 34 34 36 34 34 36 34 34 37 34 34 38 34 34 39 34 34 30 34 34 31 34 34 32 34 34 34 34 34 34 34 34 35 34 36 36 38 36 36 36 36 36 36 36 36 36 36 37 36 36 38 36 36 39 36<				orange mottling more	frequent		0.6					
N Stift. State brownell Tablek with light bown publies and sight orange Burled Original Topical 12 N Stift. State brownell Tablek with light bown publies and sight orange Burled Original Topical 14 N CLAP, sity, light yellowish brown with orange moleing, please, molein Pelencene Age Mangatume 14 CLAP, sity, light yellowish brown with orange moleing, please, molein Pelencene Age Mangatume 16 End of borehole at 15m, target depth reached 18 2 Barthole dry on completion 18 2 2 24 26 2 24 26 3 32 34 3 32 34 3 32 34 3 32 34 4 44 44 4 44 44 4 44 44 4 44 46 4 46 48 5 52 54 6 56 58							0.9					
M St.T. disk tronsing basic with light bown patches and alghrorange motifing, plastic, most Builed Original Topsol 12 M CLAY, sky, light yellowich triven with orange motifing, plastic, most Pleistocene Age Mangatina point orange 14 End of borehole at 1.5m, larget depth reached 16 18 12 Borehole dry on completion 18 2 22 24 24 24 24 25 24 24 24 26 3 32 34 32 34 36 34 44 42 44 44 46 44 46 44 46 46 46 46							0.8					
M St.T. disk twonink back with ight from patches and algitronange moting, plastic, molt Burled Orginal Topsoil 1.2 M CLAY, site, ight yellowish torion with orange moting, plastic, molt Plasticone Age Mangatona 1.6 End of borehole at 1.5m, target depth reached 1.8 2 2.2 Borehole dry on completion 1.8 2 2.4 A 1.8 2 2.4 A 2.2 2.4 2.4 A 2.4 2.4 2.4 Borehole dry on completion 1.8 2 2.4 A 3.4 3.6 3.2 A 3.4 3.6 3.4 A 3.4 3.6 3.8 A 4 4.2 4.4 A 4 4.4 4.6 A 4 4.4 4.6 B 4 4.4 4.6 A 4 4.4 4.6 A 4.6 4.6 4.6 B 5 5.6 5.6							1 -					
M Sit T, data brownish black with joint troom patches and sight orange Builed Original Topsoil M CLAY, sity, light yelloweith brown with orange motting, plastic, most Pleistoone Age Mangatuna Find of borehole at 15m, larget depth reached 1.4 1.6 Borehole dry on completion 1.8 2 2.2 2.4 2.2 2.4 2.6 2.8 3.3 3.2 3.4 3.4 3.6 3.2 3.4 3.6 3.4 4.4 4.2 4.4 4.5 5.5 5.2							12					
M CLAY, sity, light yellowsh brown with orange moting, plastic, molet Pleisticene Age Mangatura 1.4 End of borehole at 1.5m, target depth reached 1.6 1.8 2 22 2.2 2.4 2 24 2.6 2.8 3 3.2 3.4 3.6 3.8 3.4 3.6 3.8 3.4 3.6 3.8 3.8 3.8 4 4.4 4.6 4.8 5 5.2 5.4 5.6		М				Buried Original Topsoil						
Formation 1.6 End of borehole at 1.5m, target depth reached 1.8 Borehole dry on completion 1.8 2.2 2.4 2.6 2.8 3.2 3.4 3.2 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 4.4 4.4 5.2 5.4 5.5	-	М					1.4					
End of borehole d1 3.5m, target depth reached 1.8 2 2.2 2.4 2.4 2.6 2.8 3 3 3.2 3.4 3.6 3.8 4 4.4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6						Formation	1.6					
							1.8					
							2					
							2.2					
							2.4					
							2.6					
							2.8					
							3 -					
							3.2					
							3.4 -					
							3.6					
							3.8 -					
							4					
							10					
							4.2 -					
							4.4					
							4.6					
							4.6					
							4.8					
5.2 5.4 5.6 5.8							-					
							5					
							5.2					
							5.4 -					
5.8							5.6					
5.8 +												
							5.8 -	ŀ				

			ND				DG	BOREHOLE I	No: HA12
Trinsport Biorhabel Location: Refer to Sine Investigation Plan Delice completes: 10:0000077 Biorhabel Location: Refer to Sine Investigation Plan Delice completes: 0:000007 0:000007 Biorhabel Location: Refer to Sine Investigation Plan Declose 0:000007 0:000007 Biorhabel Location: Refer to Sine Investigation Plan Declose 0:00007 0:00007 Biorhabel Location: Refer to Sine Investigation Plan Declose 0:00007 0:00007 Biorhabel Location: Refer to Sine Investigation Plan Declose 0:00007 0:00007 Biorhabel Location: Refer to Sine Investigation Plan Declose 0:00007 0:00007 Biorhabel Location: Refer to Sine Investigation Plan Declose 0:00007 0:00007 Biorhabel Location: Refer to Sine Investigation Plan Declose 0:00007 0:00007 Biorhabel Location: Refer to Sine Investigation Plan Declose 0:00007 0:00007 Biorhabel Location: Refer to Sine Investigation Plan Declose 0:00007 0:00007 Biorhabel Location: Refer to Sine Investigation Plan Declose 0:00007 0:00007 Biorhabel Location: Refer	Clie	nt: Gi	sborn	e Dis	strict Council	Project: Geotechnical Investigation		LDE Project No:	13364
Description Difficult by: Attail 00 0 <td0< td=""><td></td><td></td><td></td><td></td><td></td><td>Borehole Location: Refer to Site Investi</td><td>gation Plan</td><td></td><td></td></td0<>						Borehole Location: Refer to Site Investi	gation Plan		
Image: Proceeding and the second an		-			mN	Drill method: 50mm handauger		Drilled by:	AHM
No. N No.	Ê	<u>.</u> 0	e	÷		<u> </u>			
No. N No.	epth (sraphi	loistu	treng		Soil Description	Geology	ondraine	(kPa)
1 1 1 0.2 0.2 0.2 0.2 0.3 0.4 0.2 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 <td></td> <td>0</td> <td></td> <td>s</td> <td>SILT. dark brownish b</td> <td>lack, moderately organic, moist</td> <td>Topsoil Fill</td> <td></td> <td>30 120 160 200 240</td>		0		s	SILT. dark brownish b	lack, moderately organic, moist	Topsoil Fill		30 120 160 200 240
1 1	0.1							0.2	
05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 0.0 0.0 0.0 11 0.0 0.0 0.0 12 0.0 0.0 0.0 13 0.0 0.0 0.0 14 0.0 0.0 15 0.0 0.0 16 0.0 0.0 17 0.0 0.0 18 0.0 0.0 19 0.0 0.0 10 0.0 0.0 21 0.0 0.0 22 0.0 0.0 23 0.0 0.0 34 0.0 0.0 35 0.0 0.0 36 0.0 0.0 37 0.0 0.0 38 0.0 0.0 39 0.0 0.0 31 0.0 0.0 32 0.0	0.3		M		CLAY, silty, light yellov	vish brown with orange mottling, plastic, moist		0.4	
0.7 0.8 0.8 0.1 0.1 1 1 1 1 1 1 12 1.4 1.4 1.4 1.4 1.4 13 1.6 1.6 1.6 1.6 1.6 14 1.6 1.6 1.6 1.6 1.6 1.6 15 1.6 1.6 1.6 1.6 1.6 1.6 12 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.4 1.6 <td< td=""><td>0.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.6</td><td></td></td<>	0.5							0.6	
0.3 1	0.7							0.8	
11 12 12 14 13 14 14 14 14 16 16 16 15 16 16 16 16 16 16 16 17 18 16 16 18 18 18 18 19 12 16 18 20 20 16 18 21 22 24 22 24 24 24 26 25 26 28 28 26 3 34 34 34 31 34 34 34 34 32 34 34 34 34 33 34 34 34 34 34 34 34 34 34 36 38 36 38 36 37 38 38 38 38 36 38 38 38 38 38 38 38 <t< td=""><td>0.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></t<>	0.9							1	
12 12 14 14 14 14 14 14 14 14 14 14 14 14 14 15 Borehole at 1.5m, target depth resched 18 18 18 17 Borehole aty on completion 18 18 18 18 18 Borehole aty on completion 18 22 24 24 21 22 24 24 24 24 24 25 26 28 28 28 28 28 28 28 28 28 28 28 24 24 24 24 24 24 24 24 24 24 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 24 24 24 24 24 24 24 24 24 28 28 28 28 28 28 28 28 28 28 28 28 28 24 <t< td=""><td>1.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.2</td><td></td></t<>	1.1							1.2	
14 End of bornhole at 1.6m, target depth mached 1.8 1.8 15 End of bornhole at 1.6m, target depth mached 1.8 1.8 17 1.8 1.8 2 20 2.2 2.2 2.2 21 2.4 2.4 2.4 22 2.4 2.4 2.4 24 2.4 2.4 2.4 25 2.6 2.6 2.6 26 1.8 2.8 2.8 27 2.8 2.8 3.0 30 3.1 4.4 4.4 31 4.4 4.4 4.4 33 3.4 4.4 4.4 34 4.4 4.4 4.4 35 3.6 4.8 4.8 36 4.4 4.4 4.4 4.4 4.4 4.4 4.5 4.6 4.8 4.4 4.4 4.4 4.5 4.6 4.6 4.6 4.6 4.6 4.7 4.8 4.6									
16 Decence dry on competion 17 18 18 2 20 22 21 22 23 24 24 26 26 26 27 28 28 28 29 30 30 31 31 32 33 34 34 34 35 36 36 36 37 36 38 40 41 44 42 42 43 44 44 44 45 46 46 46 47 48 48 48 49 56 51 52 53 54 56 56 57 58					End of borehole at 1.5	im, target depth reached		_	
18 1.8 19 2 20 22 21 22 23 24 24 26 27 28 29 3 30 3 31 32 33 34 35 36 36 38 37 38 38 34 41 42 42 44 43 44 44 44 43 46 46 46 47 48 48 48 49 50 50 52 53 54 54 54 55 56 56 58					Borehole dry on comp	letion			
20 22 21 22 22 22 23 24 24 26 25 26 26 28 27 28 28 28 30 3 31 32 33 34 34 34 35 36 36 38 37 38 38 38 39 4 41 42 42 42 43 44 44 44 45 46 46 48 47 48 48 48 49 44 50 51 51 52 52 54 54 58	1.8							1.8	
22 22 23 24 24 24 25 26 27 28 29 3 30 3 31 32 32 34 34 34 35 36 36 36 37 38 38 38 39 4 40 4 41 44 42 42 43 44 44 44 45 46 46 46 47 48 48 48 49 55 51 52 53 54 55 56 56 58	2.0							2	
24 24 24 25 26 26 27 28 28 29 3 32 31 32 33 32 34 34 35 36 38 36 38 38 37 38 38 39 38 38 41 42 42 42 44 44 43 44 44 44 44 44 44 44 44 45 46 46 47 48 46 46 48 48 46 46 50 51 52 54 53 54 54 54 54 58 58 58								2.2	
26 26 28 28 28 29 3 30 3 31 32 32 32 33 32 34 34 35 36 36 36 37 38 38 36 39 36 40 4 41 42 42 42 43 44 44 44 45 46 46 48 47 48 48 48 49 5 51 52 53 54 54 56 56 56 57 58								2.4	
27 28 28 28 29 30 3 32 30 32 32 32 33 34 34 34 34 36 36 36 35 36 38 38 38 38 38 38 39 4 42 42 41 42 44 44 43 44 44 44 44 44 44 44 45 46 46 46 46 48 48 48 49 52 52 54 53 54 54 54 54 56 56 56 55 56 56 56								2.6	
29 3 3 3 31 32 32 32 33 34 34 34 34 34 34 34 35 36 36 36 36 38 38 38 39 4 42 42 41 42 44 44 43 44 44 44 44 44 46 48 48 48 48 48 49 50 51 52 51 52 52 53 53 56 56 56 56 58 58 58	2.7							2.8	
31 32 32 33 33 34 34 34 35 36 36 36 36 36 36 37 38 38 39 38 38 39 4 42 40 42 42 41 42 44 43 44 44 44 46 46 47 48 46 48 46 46 50 51 52 51 52 52 53 54 56 54 56 56 57 58 58	2.9							3	
32 34 34 34 35 36 36 36 37 38 38 38 39 4 4 40 4 4 41 42 4 42 4 4 43 46 46 44 46 46 47 48 48 48 48 46 50 5 5 51 52 52 53 56 56 56 56 56 57 58 56	3.1							3.2	
3.4 3.6 3.6 3.6 3.7 3.8 3.8 3.9 3.8 3.8 4.0 4.4 4.2 4.3 4.4 4.4 4.4 4.4 4.4 4.5 4.6 4.6 4.6 4.8 4.8 4.9 5 5.6 5.0 5.4 5.4 5.3 5.6 5.6 5.6 5.6 5.6 5.7 5.8 5.6									
3.6 3.7 3.8 3.8 3.9 4 4.0 4 4.1 4.2 4.2 4.4 4.4 4.4 4.4 4.4 4.5 4.6 4.6 4.6 4.7 4.8 4.8 4.8 4.9 5 5.0 5.1 5.1 5.2 5.3 5.4 5.4 5.6 5.6 5.6 5.7 5.8									
3.8 3.8 4 3.9 4 4.0 4.2 4.2 4.4 4.3 4.4 4.4 4.4 4.5 4.6 4.6 4.8 4.7 4.8 4.8 4.8 5.0 5.1 5.1 5.2 5.3 5.4 5.5 5.6 5.6 5.6 5.6 5.6 5.7 5.8	3.6							3.6	
4.0 4.1 4.2 4.2 4.2 4.4 4.3 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.5 4.6 4.6 4.8 4.8 4.8 4.8 4	3.8							3.8	
4.2 4.2 4.4 4.3 4.4 4.4 4.5 4.6 4.6 4.6 4.6 4.8 4.8 4.8 4.8 4.9 5 5 5.0 5.1 5.2 5.3 5.2 5.2 5.3 5.4 5.6 5.6 5.6 5.8 5.7 5.8 5.8	4.0							4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								4.2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								4.4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5							4.6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.7							4.8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.9							5	
5.2 5.3 5.4 5.4 5.5 5.6 5.7 5.8	5.1								
5.4 5.4 5.4 5.5 5.6 5.7 5.8									
5.6 5.7 5.8	5.4								
5.8	5.6							5.6	
								5.8	

		8	EX				
ient	: Gis	born	e Dis	strict Council Project: Geotechnical Investigation		LDE Projec	ct No: 13364
	t Loc gi Sun			t Lot 3 DP5159, orne Borehole Location: Refer to Site Inve	estigation Plan	Hole starte Hole comp	
-ordi	inates	6:		mN Drill method: 50mm handauger		Drilled by:	RGC
2	0	e	ء	mE mE		Logged by	
	Graphic	Moisture	Strength	Soil Description	Geology	0	drained Shear Strength (kPa) 40 80 120 160 200 2
0		М	St	SILT, some clay, dark grey with light brown streaks, stiff, dry to moist	Topsoil Fill	0	
1 2		м	St	CLAY, silty, light brown to greyish brown with rare black pockets, plastic	, Non-Engineered Fill	0.2	♦ 34 ♦ 81
3				very stiff, moist		0.4	41 96
5						0.6	50 + 102
6 7		М	VSt	CLAY, silty, light brown, very stiff, moist	Pleistocene Age Mangatuna Formation		
B 9						0.8	◆ 54 ◆ 105
5						1	51 122
1 2						1.2	50 • 128
3		D-M	MD	SAND, some silt, orange brown stained, fine to medium, well sorted, dr moist	y to	1.4	42 126
1 5				pocket of fine well rounded gravel		1.6	
6 7						1.0	
3						1.8	
9						2	
1						2.2	
2 3				lense of light brown hard silty clay		2.4	X>200kRa
4 5				pocket of well sorted very fine dense white pumiceous sand			
6						2.6	
7 3						2.8	
9		D-M	D	GRAVEL, silty, fine well rounded, stained orange brown, dense, dry to moist		3	
1						3.2	X>200kPa
2		D-M	Н	SILT, rare clay, rare coarse pumiceous sand, light grey and brown with orange brown patches, hard, dry to moist	1		
1						3.4	X>200kPa
5						3.6	
7				3.8m to 3.9m: some fine to medium angular hard light grey pumice grav	vel	3.8	X>200kPa
э _				within silt matrix		4	XUTP
) 1		D-M	н	CLAY, some silt, light grey and light brown with rare orange brown patc hard, dry to moist	nes,		
2						4.2	X>200kPa
4						4.4	X>200kPa
5 6						4.6	X>200kPa
7				rare coarse pumiceous sand		4.8	X>200kPa
8 9							
0 1				End of borehole @ 5m depth Hole dry on completion		5	X>200kPļa
2				Target depth reached		5.2	
3 4				Penetrometer Test P2 put down adjacent		5.4	
5						5.6	
6							

		NDS			BOREHOLE	LOG	BOF	REHOLE N	0:	HA14
Clien	t: Gis	sborn	e Dis	strict Council	Project: Geotechnical Investigation		LDE Pro	ject No:	13364	
	ct Loc igi Sui			t Lot 3 DP5159, orne	Borehole Location: Refer to Site Inve	estigation Plan	Hole sta Hole cor		30/05/2 30/05/2	
Co-or	dinates	s:		mN mE	Drill method: 50mm handauger		Drilled b Logged		RGC RGC	
Depth (m)	Graphic	Moisture	Strength		Soil Description	Geology			(kPa)	
0.0		м		CLAY, some silt, mottl	ed dark grey and light brown, firm, moist	Fill	0	40 80	120 1	60 200 240
0.1 0.2		M-W	F	CLAY, rare silt, fat, ligt	nt brown, firm, sticky, moist to wet	Pleistocene Age Mangatuna	0.2	39		
0.3 0.4						Formation	0.4	43		
0.5		·	St	stiff rare fine decomposed	roto		0.6		85	
0.6 0.7					TOOLS		0.8 -		` 12	6
0.8 0.9		М	VSt	very stiff, moist			1 -			147
1.0 1.1									-	
1.2		D-M		greyish brown, dry to r	noist		1.2 -		+	144
1.3 1.4		D-IVI		greyish brown, dry to r	noist		1.4 -		*	144
1.5 1.6							1.6 -		- 1	34
1.7 1.8				some silt and very fine	pumiceous sand		1.8 -		€ 102	
1.9		-		some orange brown si hard			2 -			∑↓. X>200kPa
2.0 2.1							2.2			161
2.2 2.3				very stiff						·`·, ∣
2.4 2.5		D-M	VSt-H	SILT, light brown, hom	ogenous, very stiff to hard, dry to moist		2.4			X>200kPa
2.6							2.6 -			36
2.7 2.8							2.8			X>200kPa
2.9 3.0				End of borehole @ 3m	n depth		3 -			
3.1 3.2				Hole dry on completion Target depth reached	n		3.2 -			
3.3				<u>.</u>			3.4 -			
3.4 3.5							3.6 -			
3.6 3.7										
3.8 3.9							3.8 -			
4.0							4 -			
4.1 4.2							4.2			
1.3 1.4							4.4 -			
4.5 4.6							4.6			
1.7							4.8 -			
1.8 1.9							5 -			
5.0 5.1										
5.2 5.3							5.2 -			
5.4							5.4			
5.5 5.6							5.6 -			
5.7 5.8							5.8			
5.8 5.9					Notes: Shear strength lines are indica					

	LAP	ND			BOREHOLE LC)G	BOREH	OLE No: HA15
lien	t: Gis	sborn	e Dis	trict Council	Project: Geotechnical Investigation		LDE Project	No: 13364
	<mark>ct Loc</mark> igi Sui			t Lot 3 DP5159, orne	Borehole Location: Refer to Site Investi	gation Plan	Hole started Hole comple	
	dinates			mN	Drill method: 50mm handauger		Drilled by:	RGC
c	0	e	ų	mE			Logged by:	RGC
Depth (m)	Graphic	Moisture	Strength		Soil Description	Geology		rained Shear Strength (kPa)
degn 0.0 0.0 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.3 1.3 1.3 1.3 1.4 1.5 1.4 1.5 1.4 2.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 1.1 1.2 3.3 1.1 1.1		Moi Noi Noi Noi Noi Noi Noi Noi Noi Noi N	S F St VSt	wet firm, moist stiff dry to moist, no decor SILT/very fine SAND, SILT, black, hard, dry	light orange brown, crumbly, medium dense, dry ght orange brown, homogenous, hard, dry to moist n depth	Non-engineered Fill Original Topsoil (buried) Pleistocene Age Mangatuna Formation	0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6	40 80 120 160 200 24
1.6 1.7 1.8 1.9							4.8	
.0							5	
.1 .2							5.2	
.3 .4							5.4	
.5							5.6	
.6 .7								
.8							5.8	

	AN	Da				DG	ВС	REHC	DLE	No:		HA1	6
lient:	Gisb	orne	e Dis	trict Council	Project: Geotechnical Investigation		LDE Pr			1	3364		
roject l itirangi				t Lot 3 DP5159, orne	Borehole Location: Refer to Site Investi	gation Plan	Hole st Hole co				0/05/ 0/05/		
o-ordina				mN	Drill method: 50mm handauger		Drilled	by:		R	GC	2010	
2			-	mE			Logged				GC		
Depth (m) Graphic		Moisture	Strength		Soil Description	Geology		Undr	aine	d She (kPa	ear St a)	reng	th
							0	0 4	0	30 1	20 1	60 2	00 240
0.0 0.1		W	S	CLAY, some silt and d wet	lecomposed wood, soft, dark brown to light brown,	Non-engineered Fill							
).2							0.2	• 1	¥ \				-
0.3 0.4	-	D		No Wood dark grey with some lie	ght brown mottles, stiff, dry		0.4		è	68			
).5							0.6					149	
0.6 0.7			St	stiff					,				
0.8		F	F	firm			0.8		42				
0.9 1.0		┝	VSt	very stiff			1				`	141	
1.1							1.2					141	
.2 .3		р-М		dry to moist, no decon	nposed wood								
.4							1.4				•	147	
.5 .6		F	н	hard			1.6				XU.	ТР	
.7					and		1.8	-			xu	TP "	
.8 .9				some decomposed wo			2						
2.0		D	Н	SILT, black, hard, dry		Original Topsoil (buried)	2				χι	JTP	
2.1 2.2	C	р-м	Н	CLAY, some silt, light	brown to light bluish brown, hard, dry to moist	Pleistocene Age Mangatuna	2.2				- xı	JTP	
2.3 2.4						Formation	2.4				— xı	JTP	
2.4				End of borehole @ 2.5	5m depth		2.6						
2.6 2.7				Hole dry on completio Target depth reached			2.0						
2.8				raiget appartication			2.8						
2.9 3.0							3						
8.1							3.2						
3.2 3.3													
3.4							3.4						
3.5 3.6							3.6						
.7							3.8	<u> </u>					
.8 .9													
.0							4	1					
.1 .2							4.2						
.3							4.4						
.4 .5													
.6							4.6						
.7 .8							4.8						
.9							5	-					
.0 .1													
.2							5.2						
.3 .4							5.4						
.5							5.6	-					
.6 .7													
.8	1						5.8	1					

)G	во	REHOLE	No:	ł	HA17	r
Clier	nt: Gi	sborr	ne Dis	strict Council	Project: Geotechnical Investigation		LDE Pro	oject No:	13	364		
	ct Lo			t Lot 3 DP5159, orne	Borehole Location: Refer to Site Investi	gation Plan	Hole sta	arted: mpleted:		/05/2		
	dinate			mN	Drill method: 50mm handauger		Drilled	by:	RG	SC	010	
ک		ø	_	mE			Logged		RG			
Depth (m)	Graphic	Moisture	Strength		Soil Description	Geology		Undrain	ed Shea (kPa)	ar Sti	ength	•
Dep	ß						0	0 40	80 120	160	200	240
0.0 0.1		W	S	CLAY, some silt and d wet	lecomposed wood, soft, dark brown to light brown,	Non-engineered Fill						
0.2			F	firm			0.2 -	◆ 30				
0.3 0.4		D	VSt	No Wood CLAY, some silt, light	brown, very stiff, dry to moist	Pleistocene Age Mangatuna	0.4		* 1	06		
0.5 0.6				hard		Formation	0.6		xu	ITP	·	~
0.7							0.8 -		 ×I	JTP	-	
0.8 0.9							1 -			UTP		
1.0				End of borehole @ 1.0 Hole dry on completio	•						-	1
1.1 1.2				Target depth reached			1.2 -					
1.3 1.4							1.4 -					
1.5							1.6					
1.6 1.7							1.8 -					
1.8 1.9												
2.0							2 -					
2.1 2.2							2.2 -					
2.3							2.4					
2.4 2.5							2.6					
2.6 2.7												
2.8							2.8 -					
2.9 3.0							3 -					
3.1 3.2							3.2 -					
3.3							3.4 -					
3.4 3.5							3.6 -					
3.6 3.7												
3.8							3.8 -					
3.9 4.0							4 -					
4.1 4.2							4.2					
4.2 4.3							4.4 -					
4.4 4.5												
4.6							4.6 -					
4.7 4.8							4.8					
4.9 5.0							5 -					
5.1							5.2 -					
5.2 5.3												
5.4							5.4 -					
5.5 5.6							5.6 -					
5.7 5.8							5.8					
5.9							1		1 1	I	1	1

			DE\ EX		BOREHOLE LC	G		Test	Pit No:		TP1	i
ient:	Gis	born	e Dis	trict Council	Project: Geotechnical Investigation		LDE Pr		lo:	13364	1	
		ation		t Lot 3 DP5159, prne	Test Pit Location: At front door of Observ	vatory	Hole st Hole co	mplete	ed:		/2017 /2017	
-ordir	nates	5:		mN mE	Excavator method: 3 Tonne Excavator		Drilled Logged			Pete E RGC	Burgess	Ltd
	Graphic	Moisture	Strength		Soil Description	Geology		Undra	ined Sl (kl	near S Pa)	strengt	h
					and arrived light because and black arrived to use (black	Non Engineered Fill	0	0 40	80	120	160 20	0 24
2		101-00		engineered Fill)	sand, mixed light brown and black, moist to wet (Non-	Non-Engineered Fill	0.2	> 2				
				Concrete alph 90mm	thick has 200mm doop strip foundation 200mm in	Concret Slab	0.4	•	41			
;		_		from egde of slab on u	thick, has 200mm deep strip foundation 300mm in underside, dense	Pleistocene Age Mangatuna	0.6		*	92		
		М	St	CLAY, silty, light brow	n to grey, firm to stiff, moist	Formation			1			
							0.8		1	99		
							1			1		
							1.2					
							1.4					
				Base of test pit @ 1.4 Test pit dry on comple			1.6					
				Con B	State of the state		1.8					
							2					
							2.2				-	
					100 A		2.4					
					and the second states of		2.6					
					the second se		2.0					
							2.8					
							3					
							3.2					
				Alex 120			3.4					
				1 Ann								
				W tool I have			3.6					
							3.8					
							4					
							4.2					
							4.4					
							4.6					
							4.8					
							5					
							5.2					
							5.4					
							5.6					
							5.8					

LAI	NDS			BOREHOL	Elog		Tes	t Pit N	0:	TP	2
nt: Gi	sborn	e Dis	trict Council	Project: Geotechnical Investigation		LDE Pr	oject	No:	133	64	
ect Lo angi Su			t Lot 3 DP5159, orne	Test Pit Location: Southeastern C	orner of Observatory	Hole st Hole co)5/2017)5/2017	
ordinate	es:		mN mE	Excavator method: 3 Tonne Exca	vator	Drilled Logged	by:			Burgess	
Graphic	Moisture	Strength		Soil Description	Geology			ained		Streng	lth
						0	0 4	10 80	120	160 2	00 24
	M-W M-W		Concrete footing 150 SILT, sandy, mixed li	mm thick ight brown and black, loose, moist to wet (Non·	Foundation Non-engineered Fill						
			engineered Fill)	vn to grey, very stiff, moist	Bleisteene Age Mongetune	0.2	Ň.				
	М	St	CLAY, silty, light brow	<i>i</i> n to grey, very stiff, moist	Pleistocene Age Mangatuna Formation	0.4		· • •	84		
			Base of test pit @ 0.5 Pit dry on completion			0.6					
			ory on completion		280	0.8					
			Ø	1. Contraction							
			1. 1.	100000	1	1					
			C. Mall			1.2					
			Bull?	11 mart		1.4					
				A STATE OF AN		1.6					
						1.6					
						1.8					
						2					
				A TUR		2.2					
				A							
			2 de			2.4					
						2.6					
				The second second		2.8					
				4		2					
						3					
						3.2					
						3.4					
						3.6					
						3.8					
						4					
						4.2					-
						4.4					
						4.6					
						4.8					
						5					
						5.2					
						5.4					
						5.6					
1						0.0		1			
						5.8					

					BOREHOLE LO)G		Test	Pit N	0:	Т	⁻ P3	
Clien	t: Gi	sborn	e Dis	trict Council	Project: Geotechnical Investigation		LDE Pr	oject I	lo:	133	864		
		catior		t Lot 3 DP5159, orne	Test Pit Location: Northeastern Corner	of Observatory	Hole st Hole co		ed:		05/20 05/20		
Co-oro	dinate	s:		mN mE	Excavator method: 3 Tonne Excavator		Drilled Logged	by:			e Burg	jess Lt	td
Depth (m)	Graphic	Moisture	Strength		Soil Description	Geology				Shear (kPa)		ength	
Dept	Gra	Moi	Stre				0	0 40			160	200	240
0.0 0.1		D D		Concrete footing 80m	m thick nt brown and black, loose, dry (Non-engineered Fill)	Foundation Non-engineered Fill		N.					
0.2							0.2						
0.3 0.4		D-M	VSt	CLAY, silty, light brown	n to grey, very stiff, dry to moist	Pleistocene Age Mangatuna Formation	0.4			••••	128		
0.5				Base of test pit @ 0.5r Pit dry on completion	n		0.6						
0.6 0.7				The dry on completion			0.8						
0.8 0.9													
1.0							1						
1.1 1.2							1.2						
.3 .4							1.4						
.5							1.6						
.6 .7							1.8						
.8 .9													
2.0					in the second		2						
2.1 2.2				A STREAM	1 Constant		2.2						
2.3 2.4				THINKING PARTY	and a start of the		2.4						
.5							2.6						
.6 .7				and the second									
.8					140% - 4 - 2		2.8						
.9 .0							3						
.1 .2				- mar - t			3.2						
.3							3.4						
8.4 8.5							3.6						
.6 .7							3.0						
8.8							3.8						
.9 .0							4						
.1							4.2						
.2 .3							4.4						
.4 .5							4.4						
.6							4.6						
.7 .8							4.8						
.9							5						
5.0 5.1													
5.2 5.3							5.2						
5.4							5.4						
5.5 5.6							5.6						
5.7							5.8						
5.8 5.9							0.0						

		ND			BOREHOLE L	DG	BOREHOLE No:	EXP1
Clie	nt: Gi	sborr	ne Dis	strict Council	Project: Geotechnical Investigation		LDE Project No:	13364
	ect Lo ngi Su			t Lot 3 DP5159,	Exposure Location:6m East of Gun Err Investigation Plan	placement/Refer to Site		19/05/2017 19/05/2017
	dinate			mN mE	Drill method: N/A		Drilled by:	RGC
Ê	0	e	ء	me				RGC
Depth (m)	Graphic	Moisture	Strength		Soil Description	Geology	Undrained Sł (kł	Pa)
0.0		M-W		CLAY, silty, light brow	n with black patches,firm to stiff, moist to wet	Non-Engineered Fill		120 160 200 240
0.1 0.2							0.2	
0.3 0.4							0.4 🍎 🊁 52	
0.5							0.6	
0.6 0.7								
0.8 0.9							0.8	
1.0							1 + +6-37	
1.1 1.2							1.2	
1.3			E Q+		rards emplacement @ 25° to 30° n to grey, firm to stiff, moist	Pleistocene Age Mangatuna	1.4 2 -55	
1.4 1.5		IVI	1-51	GEAT, Silly, light brow	n to grey, min to sun, moist	Formation	1.6	
1.6 1.7								
1.8							1.8	
1.9 2.0			St	stiff			2 41 76	
2.1 2.2							2.2	
2.3							2.4	
2.4 2.5							2.6	
2.6 2.7								
2.8							2.8 42 76	
2.9 3.0							3 🔶 🌩 76	
3.1 3.2				Base of Exposure @ 3	3.2m			
3.3					ngths low due to increase moisture from rainfall ever	nt	3.4	
3.4 3.5								
3.6 3.7					July Los Physics		3.6	
3.8					A State of Longe		3.8	
3.9 4.0					ALL PARTY AND ALL AND ALL		4	
4.1 4.2					REAL PROPERTY		4.2	
4.3				R Real			4.4	
4.4 4.5								
4.6 4.7							4.6	
4.8							4.8	
4.9 5.0				11 5			5	
5.1 5.2							5.2	
5.3							5.4	
5.4 5.5				XXX 1/2	10 March			
5.6 5.7					A RANK		5.6	
5.8							5.8	
5.9								

	AND		VELOPMENT	BOREHOLE L	DG	BOREHOLE N	DE EXP2
ent: (Gisborr	ne Dis	strict Council	Project: Geotechnical Investigation		LDE Project No:	13364
	ocatio Summit,		rt Lot 3 DP5159, orne	Exposure Location: East of Observator Plan	ye/Refer to Site Investigation	Hole started: Hole completed:	19/05/2017 19/05/2017
ordina	ates:		mN mE	Drill method: N/A		Drilled by: Logged by:	RGC RGC
Graphic	Moisture	Strength		Soil Description	Geology	Undrained	Shear Strength kPa)
						0 40 80	120 160 200 2
	D-M	Н	CLAY, silty, light brow	vn, desiccated, hard, dry	Pleistocene Age Mangatuna Formation		
2						0.2	
3						0.4	
5	- <u></u> -	VSt				0.6 37	▲ 144
6 7						0.8	
	M-W	MD	SAND, some silt, fine medium dense, mois	to menium, well sorted, light grey to light brown, t to wet			
						1	
2						1.2	
	м			o medium, well rounded, brown with some orange um dense to dense, moist		1.4	
5			-			1.6	
i '			Base of Exposure @	1.7m		_	
			-	ar strengths due to dry nature of clay		1.8	
						2	
2						2.2	
3						2.4	
			and the second second	-			
5			A hard	A Martin The State		2.6	
3			Ma At	Carles and the second		2.8	
			To and	a the same		3	
			No the State			3.2	
			Nr. Pris.	A BLANDER			
÷			Par A	The state to a		3.4	
;						3.6	
						3.8	
)			i - Alexandre			4	
2			- Carinella			4.2	
i.						4.4	
						4.6	
						4.8	
;							
)						5	
2						5.2	
3						5.4	
5						5.6	
6 7							
3						5.8	

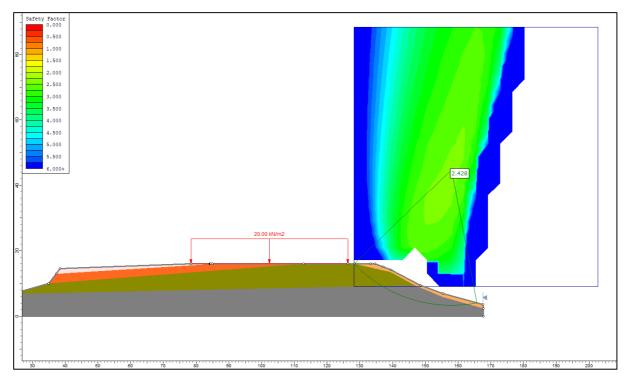
atior	Strength	mN mE	Project: Geotechnical Investigation Exposure Location: NE of Onbservato Plan Drill method: N/A Soil Description	ry/Refer to Site Investigation	LDE Project N Hole started: Hole complete Drilled by: Logged by:	19/		
Moisture s:	Strength	ome mN mE	Plan Drill method: N/A	ry/Refer to Site Investigation	Hole complete Drilled by: Logged by:	ed: 19/ RG	/05/2017 iC	
Moisture		mE	ļ		Logged by:			
		CLAY, silty, light brow	Soil Description					
		CLAY, silty, light brow		Geology	Undra	ined Shea (kPa)	r Strength	h
M-W	F-St	CLAY, silty, light brow			0 40	80 120	160 200	0 2
	VSt MD	moist to wet		Pleistocene Age Mangatuna Formation		\$6 52 34 46 52	117	
		brown, medium dens	e to dense, moist to wet		2.4 2.6 2.8 3 3.2			
		Undrained shear stre	ngths low due to increase moisture from rainfall eve	nt	3.4			
					3.6			
					3.8			
		Aller .	and the former		4.4			
		1 S	S STANDIER .		4.6			
					4.8			
			AND THE REAL PROPERTY AND THE READ THE READ THE REAL PROPERTY AND		5			
			A BALLAND AND AND AND		5.2			
		AND AND			5.4			
		also a						
					5.6			
					5.8			
		VSt M-W MD	VSt M-W MD SAND, silty, tracee of moist to wet M-W MD-D GRAVEL, sandy, fine brown, medium dens Base of Exposure @	VSt MD SAND, sity, tracee of clay, light brown to greyish brown, medium dense, moist to wet M-W MD-D GRAVEL, sandy, fine to medium, well rounded, stained brown to orange brown, medium dense to dense, moist to wet M-W MD-D Base of Exposure @ 3.2m Undrained shear strengths low due to increase moisture from rainfall eve Image: Strength Stren	VSt M-W MD SAND, silly, tracee of clay, light brown to greyish brown, medium dense, moist to wet W-W MD-D GRAVEL sandy, fine to medium, well rounded, stained brown to orange brown, medium dense to dense, moist to wet W-W MD-D GRAVEL sandy, fine to medium, well rounded, stained brown to orange brown, medium dense to dense, moist to wet W-W MD-D GRAVEL sandy, fine to medium, well rounded, stained brown to orange brown, medium dense to dense, moist to wet W-W MD-D GRAVEL sandy, fine to medium, well rounded, stained brown to orange brown, medium dense to dense, moist to wet W-W MD-D GRAVEL sandy, fine to medium, well rounded, stained brown to orange brown, medium dense, moist to wet W-W MD-D GRAVEL sandy, fine to dense, moist to wet Undrained shear strengths low due to increase moisture from rainfall event Image: model sandy file to the sandy f	Image: State of Exposure @ 3.2m 1.2 Image: State of Exposure @ 3.2m 1.3 Image: State of Exposure @ 3.2m 1.4 Image: State of Exposure @ 3.2m 1.5 Image: State of Exposure @ 3.2m 1.5	Image: Similar	Base of Exposure @ 3.2m 3.2 Undrained shear strengths low due to increase molecure from miniful event 3.4 Undrained shear strengths low due to increase molecure from miniful event 3.4 Undrained shear strengths low due to increase molecure from miniful event 3.4 Undrained shear strengths low due to increase molecure from miniful event 3.4 Undrained shear strengths low due to increase molecure from miniful event 3.4 Strengths low due to increase molecure from miniful event 3.4 Strengths low due to increase molecure from miniful event 3.4 Strengths low due to increase molecure from miniful event 3.4 Strengths low due to increase molecure from miniful event 3.4 Strengths low due to increase molecure from miniful event 3.4 Strengths low due to increase molecure from miniful event 3.4 Strengths low due to increase molecure from miniful event 3.4 Strengths low due to increase molecure from miniful event 3.6 Strengths low due to increase molecure from miniful event 3.6 Strengths low due to increase molecure from miniful event 3.6 Strengths low due to increase molecure from miniful event 3.6 Strengths low due to increase molecure from the due to increase molecure from the

DRILLHOLE LOG									BOREHOLE No: MBH1 PAGE 1 of 2			
Client: (A EXPLORATION LTD. Iient: Gisborne District Council Project: Geotechnical Investigation									LDE Project No.: 13364		
Project Location: Gisborne Observatory,						ervatory,	Borehole Location: Refer to site plan		Hole started:	27/05/2017		
Titirangi Drive, Gisborne Co-ordinates: R.L. m							Drill method: Direct Push		Hole completed: Drilled by: Logged by:	27/05/2017 LDE Drilling RGC		
Tests	0.0	Core Rec'	Graphic	Moisture	~ ~	Engineering Description Defects			Geology			
				\succ		No Core (Compr			Non-Engineered Fill			
10	0.1 0.2			М	S	SILT, sandy (pu moist	miceous), rare clay, dark brown to black, soft,					
10	0.3			М	F	SILT, some purr friable, firm, mois	iceous sand, trace rootlets, dark grey to black,		Original Topsoil			
35	0.4 0.5	90		M			us), rare to some fines, brown, loose, moist		Rhyolitic Tephra (Air fall)			
45	0.6			L								
25	0.7 0.8			М	F	CLAY, rare pum firm, moist	iceous sand, light brown to light orange brown,		Pleistocene Age Mangate	una Formation		
25	0.0											
40	1.0											
90	1.1 1.2				St	some pumiceous	s sand, stiff					
	1.3					thin (4mm) clear	white pumiceous sand layer (30°dip)					
80	1.4 1.5	100					e brown patches					
130	1.6				VSt	rare decompose stiff	d rootlets (typical Mangatuna Formation), very					
120	1.7 1.8											
	1.9					none completely.	weathered war weal first mudaters around and					
100	2.0 2.1			D-M			weathered very weak fine mudstone gravel and dry to moist, crumbly					
110	2.2											
140	2.3 2.4	100				moist						
	2.5	100				Thin (4mm) silt h	norizons					
180	2.6 2.7							2.6m & 2.8m: Set of slip surfaces, 30° dip, slightly polished, wavy, dry				
180	2.8							faces-appears relict, grey surfaces on both				
110	2.9 3.0			D-M		dry to moist						
110	3.1			2								
105	3.2 3.3			<u></u>	VSt	SILT, clayey, ligh	nt brown to orange brown, very stiff, dry to moist					
120	3.4	100		J-1VI	voi							
120	3.5 3.6											
120	3.7											
105	3.8 3.9											
110	4.0											
125	4.1 4.2					crumbly						
120	4.2											
100	4.4 4.5	100										
130	4.5 4.6						are shell fragments, sand, and fine well rounded					
405	4.7 4.8					gravel						
135	4.8 4.9	L			L							
135	5.0	\otimes	K	\bigotimes	\boxtimes	5.0m to 5.2m: co	bre loss					
	5.1 5.2	$rac{1}{2}$	\frown		MD		edium, light brown to orange brown, contains					
	5.3					pockets of light b	prown clay, medium dense, dry					
	5.4 5.5											
	5.6	80				rare fine well rou	inded gravel and shell fragments					
	5.7 5.8					pocket/lense of I	ight brown clay					
	5.9						·					

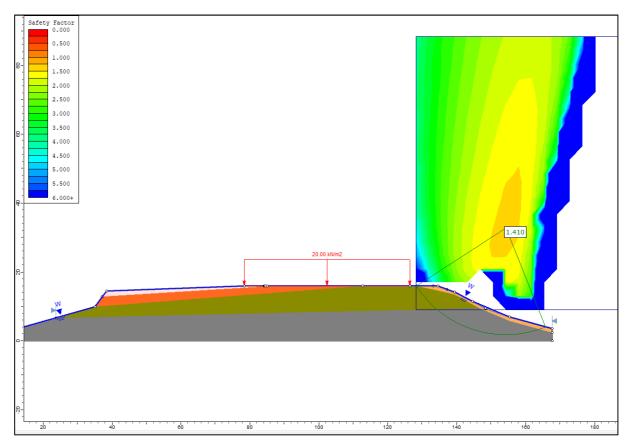
DEVELOPMENT S EXPLORATION LTD.							DRILLHOLE L	CG	BOREHOLE No:	MBH1
									PAGE 2 of 2	
Client: Gisborne District Council						cil	Project: Geotechnical Investigation	ı	LDE Project No.:	13364
Project Location: Gisborne Observatory, Titirangi Drive, Gisborne						bservatory,	Borehole Location: Refer to site pla	n	Hole started: Hole completed:	27/05/201 27/05/201
Co-ordinates: R.L. m							Drill method: Ditrect Push		Drilled by: Logged by:	LDE Drilling RGC
Tests	Depth (m)	Core Rec'	Graphic	Moisture	Strength	l	Engineering Description Defects		Geology	
145	گ 6.0	ŏ	0	Ð	MD		edium, light brown to orange brown, contains		Pleistocene Age Mangat	una Formation
	6.1 6.2					pockets of light	brown clay, medium dense, dry			
	6.3 6.4				MD	GRAVEL, sandy	/, well rounded, fine to medium, medium dense,			
	6.5	100				dry				
100	6.6 6.7						and pumiceous sand, light greenish brown with eins, medium dense, dry to moist			
100	6.8 6.9									
100	7.0				<u> </u>	End of Borehole Borehole Dry on				
	7.1 7.2					Dorentile Dry of				
	7.3 7.4									
	7.5									
	7.6 7.7									
	7.8 7.9									
	8.0									
	8.1 8.2									
	8.3 8.4									
	8.5									
	8.6 8.7									
	8.8 8.9									
	9.0									
	9.1 9.2									
	9.3 9.4									
	9.5									
	9.6 9.7									
	9.8 9.9									
	10.0									
	10.1 10.2									
	10.3 10.4									
	10.5 10.6									
	10.7									
	10.8 10.9									
	11.0									
	11.1 11.2									
	11.3 11.4									
	11.5									
	11.6 11.7									
	11.8 11.9									

Numeric Slope Stability Analyses Summary Information Sheet & Models

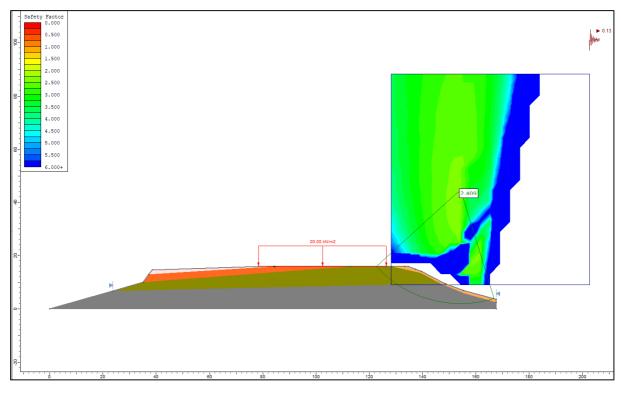
Material	γ (kN∕m³)	C' (kPa)	Ø' (°)	Su (kPa)
Non-engineered Fill	18	2	25	-
Firm Clay	19	3	24	25
Stiff To Very Stiff Clay	19	4	26	75
Very Stiff To Hard Clay	19	7	30	150
Medium Dense To Dense Sand & Gravel	20	1	35	-
High Density Cemented Tephra/Very Weak Sandstone	UCS = 1MPa	GSI :	= 60, IRC = 7	

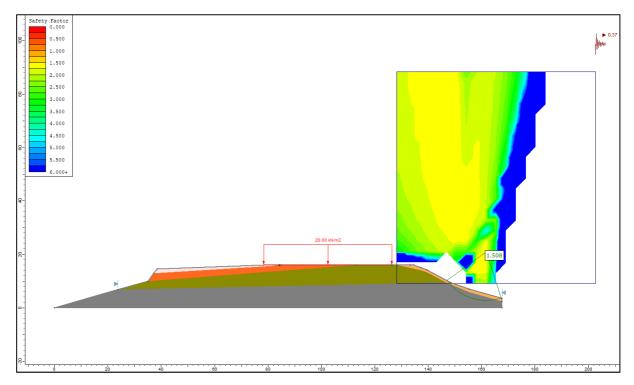

Numeric Slope Stability Analyses Strength Parameter Table

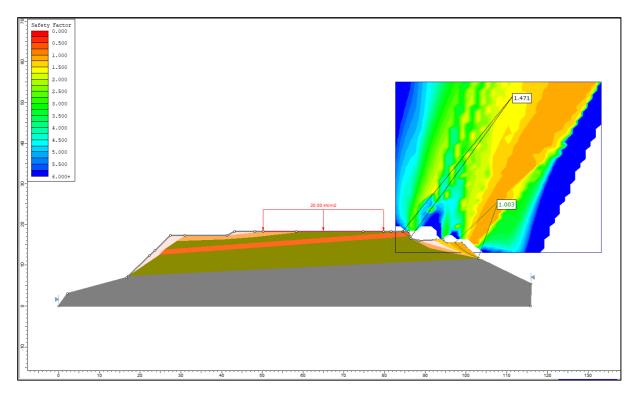
Numeric Slope Stability Analyses Material Colour Key

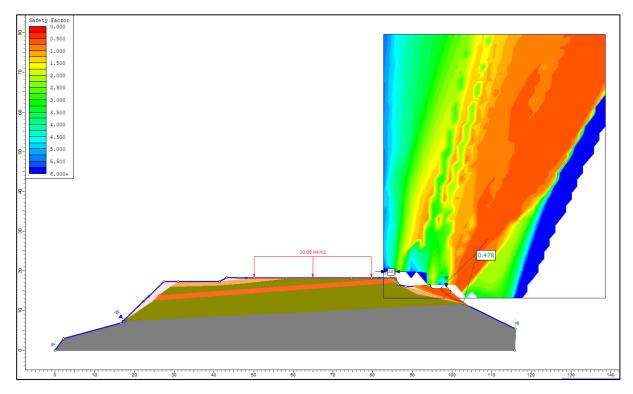

Material Name	
Non-Engineered Fill	
Firm Clay	
Stiff To Very Stiff Clay	
Very Stiff To Hard Clay	
Medium Dense To Dense Sand & Gravel	
High Density Cemented Tephra/very Weak Sandstone	

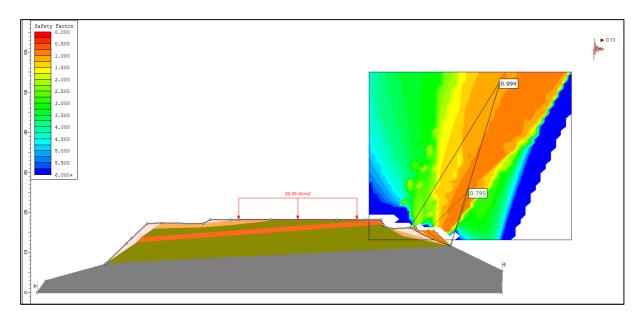
Notes:

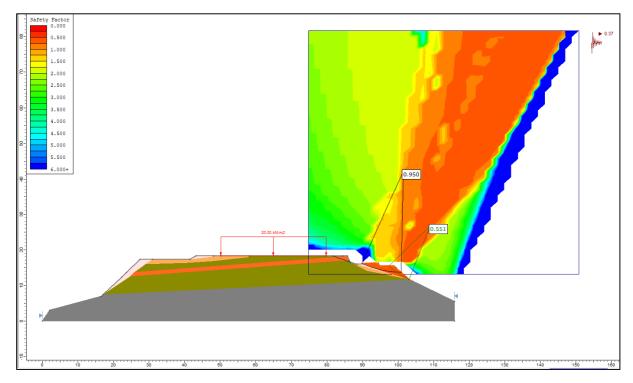

A distiributed load of 20kN/m² representing the likley load of the future building has been applies to each model on top of the new platfrom proposed to be created.

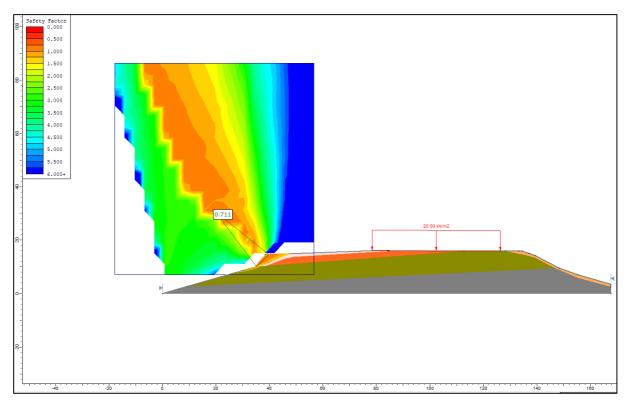

Rotational model north slope – Design/Prevailing groundwater condition showing FoS values exceed 1.5.

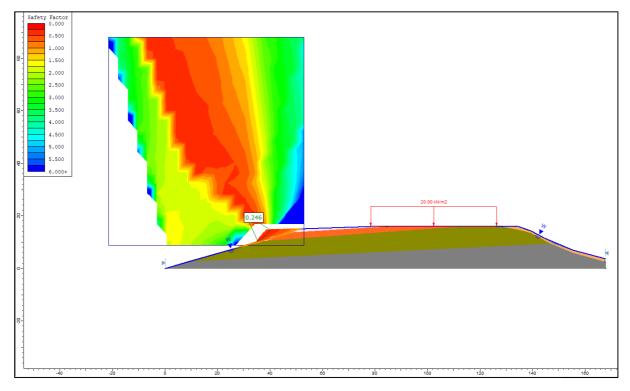

Rotational model north slope – Extreme groundwater condition showing FoS values exceed 1.2.


Rotational model north slope – SLS seismic condition showing FoS values exceed 1.0.

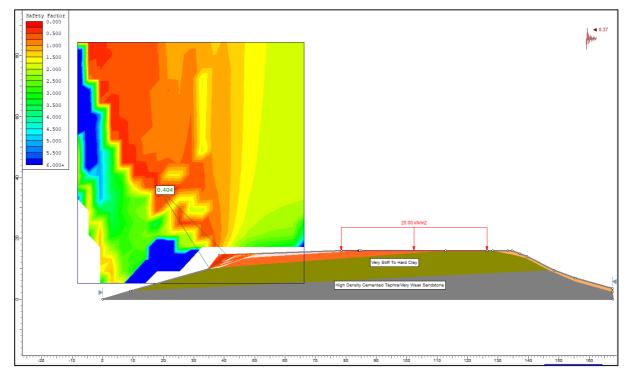

Rotational model north slope – ULS seismic condition showing FoS values exceed 1.0.

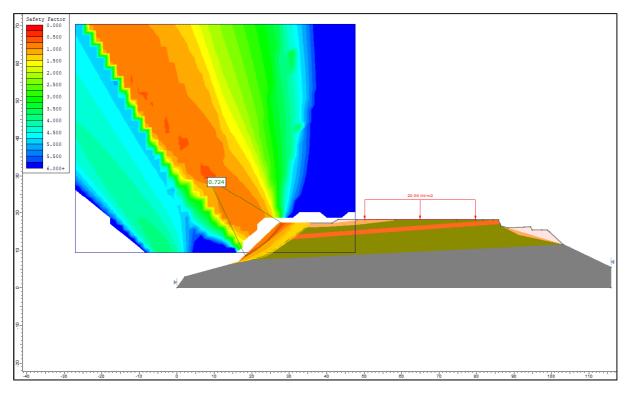

Rotational model east slope – Design/Prevailing groundwater condition showing FoS values <1.5

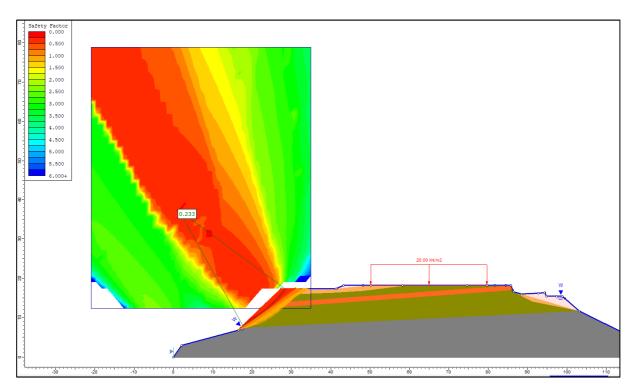

Rotational model east slope – Extreme groundwater condition showing FoS values <1.2

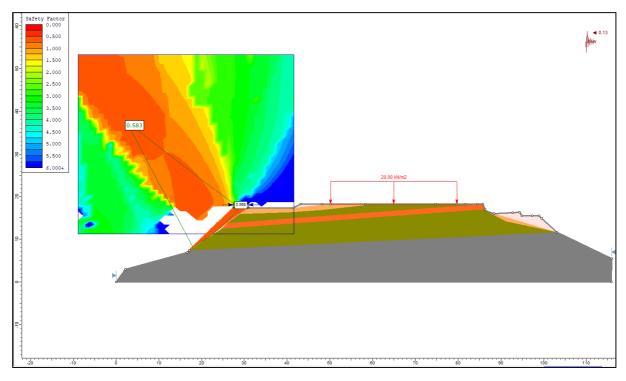

Rotational model east slope – SLS seismic condition showing FoS values <1.0

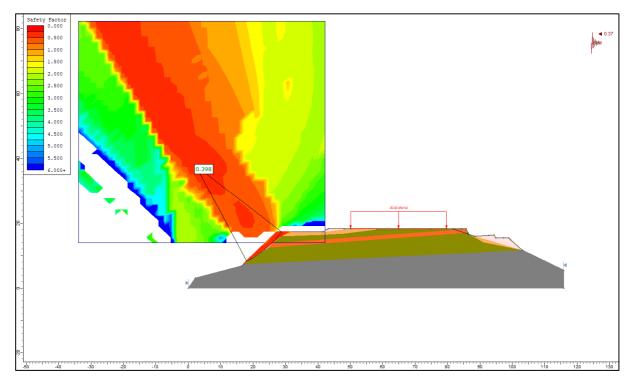
Rotational model east slope – ULS seismic condition showing FoS values <1.0

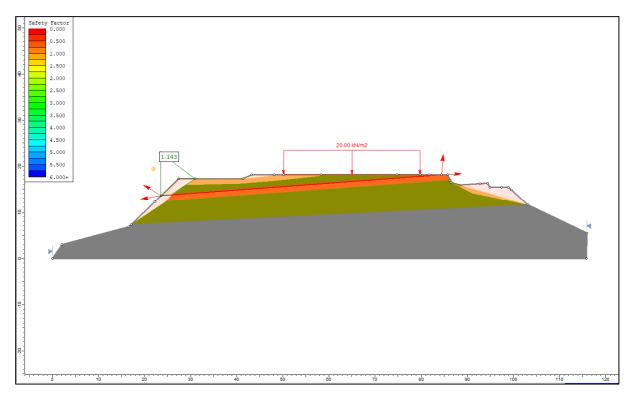

Rotational model south slope – Design/Prevailing groundwater condition showing FoS values <1.5.

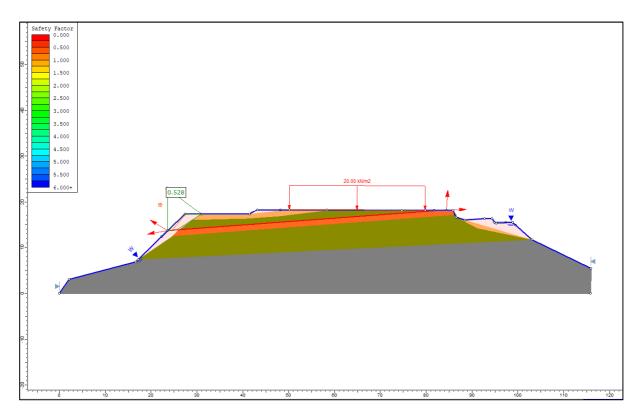

Rotational model south slope – Extreme groundwater condition showing FoS values <1.2.

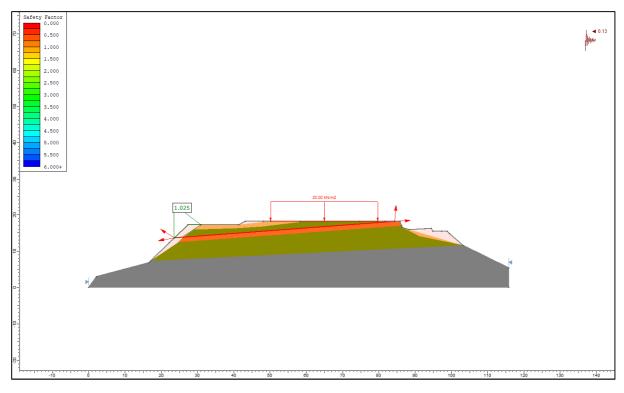

Rotational model south slope – SLS seismic condition showing FoS values <1.0.

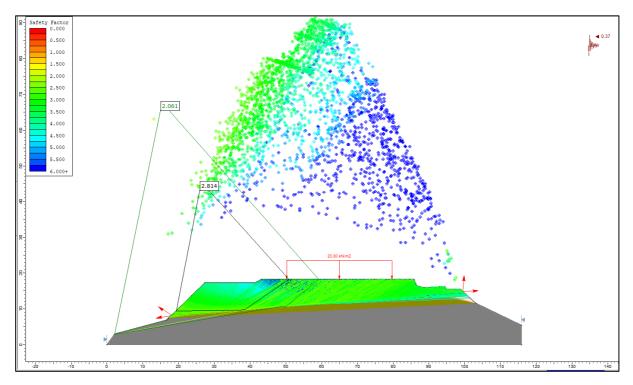

Rotational model south slope – ULS seismic condition showing FoS values <1.0.


Rotational model southwest slope -Design/Prevailing groundwater condition showing FoS values <1.5.


Rotational model southwest slope -Extreme groundwater condition showing FoS values <1.2


Rotational model southwest slope –SLS seismic condition showing FoS values <1.0


Rotational model southwest slope –ULS seismic condition showing FoS values <1.0.


Translational model southwest slope -Design/Prevailing groundwater condition showing FoS values <1.5.

Translational model southwest slope– Extreme groundwater condition showing FoS values <1.2.

Translational model southwest slope – SLS seismic condition showing FoS values exceed 1.0.

Translational model southwest – ULS seismic condition showing FoS values exceed 1.0.

WHANGAREI | WARKWORTH | NORTH SHORE | AUCKLAND | BAY OF PLENTY | GISBORNE | NAPIER | WHANGANUI www.lde.co.nz

LDE LTD